Expands integration tests in dnn_test.

PiperOrigin-RevId: 157476608
This commit is contained in:
A. Unique TensorFlower 2017-05-30 10:04:11 -07:00 committed by TensorFlower Gardener
parent 21461213dd
commit 6c3b15915d
2 changed files with 156 additions and 23 deletions

View File

@ -119,6 +119,7 @@ py_test(
":metric_keys",
":model_fn",
":numpy_io",
":pandas_io",
":prediction_keys",
"//tensorflow/core:protos_all_py",
"//tensorflow/python:array_ops",
@ -126,9 +127,11 @@ py_test(
"//tensorflow/python:client",
"//tensorflow/python:client_testlib",
"//tensorflow/python:constant_op",
"//tensorflow/python:data_flow_ops",
"//tensorflow/python:dtypes",
"//tensorflow/python:framework_ops",
"//tensorflow/python:math_ops",
"//tensorflow/python:parsing_ops",
"//tensorflow/python:platform",
"//tensorflow/python:state_ops",
"//tensorflow/python:summary",

View File

@ -25,6 +25,8 @@ import tempfile
import numpy as np
import six
from tensorflow.core.example import example_pb2
from tensorflow.core.example import feature_pb2
from tensorflow.core.framework import summary_pb2
from tensorflow.python.client import session as tf_session
from tensorflow.python.estimator import model_fn
@ -34,25 +36,40 @@ from tensorflow.python.estimator.canned import metric_keys
from tensorflow.python.estimator.canned import prediction_keys
from tensorflow.python.estimator.export import export
from tensorflow.python.estimator.inputs import numpy_io
from tensorflow.python.estimator.inputs import pandas_io
from tensorflow.python.feature_column import feature_column
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
from tensorflow.python.summary import summary as summary_lib
from tensorflow.python.training import checkpoint_utils
from tensorflow.python.training import input as input_lib
from tensorflow.python.training import monitored_session
from tensorflow.python.training import optimizer
from tensorflow.python.training import queue_runner
from tensorflow.python.training import saver
from tensorflow.python.training import session_run_hook
from tensorflow.python.training import training_util
try:
# pylint: disable=g-import-not-at-top
import pandas as pd
HAS_PANDAS = True
except IOError:
# Pandas writes a temporary file during import. If it fails, don't use pandas.
HAS_PANDAS = False
except ImportError:
HAS_PANDAS = False
# Names of variables created by model.
_LEARNING_RATE_NAME = 'dnn/regression_head/dnn/learning_rate'
_HIDDEN_WEIGHTS_NAME_PATTERN = 'dnn/hiddenlayer_%d/kernel'
@ -503,6 +520,22 @@ class DNNRegressorPredictTest(test.TestCase):
}, next(dnn_regressor.predict(input_fn=input_fn)))
def _queue_parsed_features(feature_map):
tensors_to_enqueue = []
keys = []
for key, tensor in six.iteritems(feature_map):
keys.append(key)
tensors_to_enqueue.append(tensor)
queue_dtypes = [x.dtype for x in tensors_to_enqueue]
input_queue = data_flow_ops.FIFOQueue(capacity=100, dtypes=queue_dtypes)
queue_runner.add_queue_runner(
queue_runner.QueueRunner(
input_queue,
[input_queue.enqueue(tensors_to_enqueue)]))
dequeued_tensors = input_queue.dequeue()
return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))}
class DNNRegressorIntegrationTest(test.TestCase):
def setUp(self):
@ -512,44 +545,27 @@ class DNNRegressorIntegrationTest(test.TestCase):
if self._model_dir:
shutil.rmtree(self._model_dir)
def test_complete_flow(self):
label_dimension = 2
batch_size = 10
feature_columns = [feature_column.numeric_column('x', shape=(2,))]
def _test_complete_flow(
self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension,
label_dimension, batch_size):
feature_columns = [
feature_column.numeric_column('x', shape=(input_dimension,))]
est = dnn.DNNRegressor(
hidden_units=(2, 2),
feature_columns=feature_columns,
label_dimension=label_dimension,
model_dir=self._model_dir)
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
data = data.reshape(batch_size, label_dimension)
# TRAIN
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
num_steps = 200
num_steps = 10
est.train(train_input_fn, steps=num_steps)
# EVALUTE
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
shuffle=False)
scores = est.evaluate(eval_input_fn)
self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP])
self.assertIn('loss', six.iterkeys(scores))
# PREDICT
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
batch_size=batch_size,
shuffle=False)
predictions = np.array([
x[prediction_keys.PredictionKeys.PREDICTIONS]
for x in est.predict(predict_input_fn)
@ -564,6 +580,120 @@ class DNNRegressorIntegrationTest(test.TestCase):
serving_input_receiver_fn)
self.assertTrue(gfile.Exists(export_dir))
def test_numpy_input_fn(self):
"""Tests complete flow with numpy_input_fn."""
label_dimension = 2
batch_size = 10
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
data = data.reshape(batch_size, label_dimension)
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=label_dimension,
label_dimension=label_dimension,
batch_size=batch_size)
def test_pandas_input_fn(self):
"""Tests complete flow with pandas_input_fn."""
if not HAS_PANDAS:
return
label_dimension = 1
batch_size = 10
data = np.linspace(0., 2., batch_size, dtype=np.float32)
x = pd.DataFrame({'x': data})
y = pd.Series(data)
train_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
shuffle=False)
predict_input_fn = pandas_io.pandas_input_fn(
x=x,
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=label_dimension,
label_dimension=label_dimension,
batch_size=batch_size)
def test_input_fn_from_parse_example(self):
"""Tests complete flow with input_fn constructed from parse_example."""
label_dimension = 2
batch_size = 10
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
data = data.reshape(batch_size, label_dimension)
serialized_examples = []
for datum in data:
example = example_pb2.Example(features=feature_pb2.Features(
feature={
'x': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=datum)),
'y': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=datum)),
}))
serialized_examples.append(example.SerializeToString())
feature_spec = {
'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32),
'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32),
}
def _train_input_fn():
feature_map = parsing_ops.parse_example(serialized_examples, feature_spec)
features = _queue_parsed_features(feature_map)
labels = features.pop('y')
return features, labels
def _eval_input_fn():
feature_map = parsing_ops.parse_example(
input_lib.limit_epochs(serialized_examples, num_epochs=1),
feature_spec)
features = _queue_parsed_features(feature_map)
labels = features.pop('y')
return features, labels
def _predict_input_fn():
feature_map = parsing_ops.parse_example(
input_lib.limit_epochs(serialized_examples, num_epochs=1),
feature_spec)
features = _queue_parsed_features(feature_map)
features.pop('y')
return features, None
self._test_complete_flow(
train_input_fn=_train_input_fn,
eval_input_fn=_eval_input_fn,
predict_input_fn=_predict_input_fn,
input_dimension=label_dimension,
label_dimension=label_dimension,
batch_size=batch_size)
def _full_var_name(var_name):
return '%s/part_0:0' % var_name