mirror of
https://github.com/zebrajr/tensorflow.git
synced 2025-12-07 12:20:24 +01:00
Merging rc1 back into master.
This commit is contained in:
parent
fe589d9e7c
commit
3fdbb55790
12
README.md
12
README.md
|
|
@ -34,12 +34,12 @@ and discussion.**
|
|||
|
||||
People who are a little more adventurous can also try our nightly binaries:
|
||||
|
||||
* Linux CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc0-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc0-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc0-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/))
|
||||
* Linux GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc0-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc0-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc0-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/))
|
||||
* Mac CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc0-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc0-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/))
|
||||
* Mac GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc0-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc0-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/))
|
||||
* Windows CPU-only: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=cpu,OS=windows/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.2.0rc0-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=cpu,OS=windows/))
|
||||
* Windows GPU: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=gpu,OS=windows/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.2.0rc0-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=gpu,OS=windows/))
|
||||
* Linux CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc1-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc1-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc1-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/))
|
||||
* Linux GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc1-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc1-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc1-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/))
|
||||
* Mac CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc1-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc1-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/))
|
||||
* Mac GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc1-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc1-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/))
|
||||
* Windows CPU-only: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=cpu,OS=windows/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.2.0rc1-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=cpu,OS=windows/))
|
||||
* Windows GPU: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=gpu,OS=windows/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.2.0rc1-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/DEVICE=gpu,OS=windows/))
|
||||
* Android: [demo APK](https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/tensorflow_demo.apk), [native libs](http://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/native/)
|
||||
([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-android/))
|
||||
|
||||
|
|
|
|||
37
RELEASE.md
37
RELEASE.md
|
|
@ -44,9 +44,43 @@
|
|||
* Support client-provided ClusterSpec's and propagate them to all workers to enable the creation of dynamic TensorFlow clusters.
|
||||
* TensorFlow C library now available for Windows.
|
||||
* We released a new open-source version of TensorBoard.
|
||||
* [`SavedModel CLI`](https://www.tensorflow.org/versions/master/programmers_guide/saved_model_cli) tool available to inspect and execute MetaGraph in SavedModel
|
||||
* Android releases of TensorFlow are now pushed to jcenter for easier
|
||||
integration into apps. See
|
||||
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/android/README.md
|
||||
for more details.
|
||||
* RNNCells' variable names have been renamed for consistency with Keras layers.
|
||||
Specifically, the previous variable names "weights" and "biases" have
|
||||
been changed to "kernel" and "bias", respectively.
|
||||
This may cause backward incompatibility with regard to your old
|
||||
checkpoints containing such RNN cells, in which case you can use the tool
|
||||
[checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
|
||||
to convert the variable names in your old checkpoints.
|
||||
* Many of the RNN functions and classes that were in the `tf.nn` namespace
|
||||
before the 1.0 release and which were moved to `tf.contrib.rnn` have now
|
||||
been moved back to the core namespace. This includes
|
||||
`RNNCell`, `LSTMCell`, `GRUCell`, and a number of other cells. These
|
||||
now reside in `tf.nn.rnn_cell` (with aliases in `tf.contrib.rnn` for backwards
|
||||
compatibility). The original `tf.nn.rnn` function is now `tf.nn.static_rnn`,
|
||||
and the bidirectional static and state saving static rnn functions are also
|
||||
now back in the `tf.nn` namespace.
|
||||
|
||||
Notable exceptions are the `EmbeddingWrapper`, `InputProjectionWrapper` and
|
||||
`OutputProjectionWrapper`, which will slowly be moved to deprecation
|
||||
in `tf.contrib.rnn`. These are inefficient wrappers that should often
|
||||
be replaced by calling `embedding_lookup` or `layers.dense` as pre- or post-
|
||||
processing of the rnn. For RNN decoding, this functionality has been replaced
|
||||
with an alternative API in `tf.contrib.seq2seq`.
|
||||
|
||||
## Deprecations
|
||||
|
||||
* TensorFlow 1.2 may be the last time we build with cuDNN 5.1. Starting with
|
||||
TensorFlow 1.3, we will try to build all our prebuilt binaries with cuDNN 6.0.
|
||||
While we will try to keep our source code compatible with cuDNN 5.1, it will
|
||||
be best effort.
|
||||
|
||||
## Breaking Changes to the API
|
||||
* `org.tensorflow.contrib.android.TensorFlowInferenceInterface` now throws exceptions where possible and and has simplified method signatures.
|
||||
* `org.tensorflow.contrib.android.TensorFlowInferenceInterface` now throws exceptions where possible and has simplified method signatures.
|
||||
|
||||
## Changes to contrib APIs
|
||||
* Added `tf.contrib.util.create_example`.
|
||||
|
|
@ -98,7 +132,6 @@
|
|||
* Add `tf.summary.text` for outputting text to TensorBoard.
|
||||
* The "run" command of tfdbg's command-line interface now supports filtering of tensors by node name, op type and tensor dtype.
|
||||
* `tf.string_to_number` now supports int64 and float64 outputs.
|
||||
* `SavedModel CLI` tool available to inspect and execute MetaGraph in SavedModel
|
||||
|
||||
## Thanks to our Contributors
|
||||
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ limitations under the License.
|
|||
|
||||
// TF_VERSION_SUFFIX is non-empty for pre-releases (e.g. "-alpha", "-alpha.1",
|
||||
// "-beta", "-rc", "-rc.1")
|
||||
#define TF_VERSION_SUFFIX "-rc0"
|
||||
#define TF_VERSION_SUFFIX "-rc1"
|
||||
|
||||
#define TF_STR_HELPER(x) #x
|
||||
#define TF_STR(x) TF_STR_HELPER(x)
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ enable TensorFlow for C:
|
|||
OS="linux" # Change to "darwin" for Mac OS
|
||||
TARGET_DIRECTORY="/usr/local"
|
||||
curl -L \
|
||||
"https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-${OS}-x86_64-1.2.0-rc0.tar.gz" |
|
||||
"https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-${OS}-x86_64-1.2.0-rc1.tar.gz" |
|
||||
sudo tar -C $TARGET_DIRECTORY -xz
|
||||
|
||||
The `tar` command extracts the TensorFlow C library into the `lib`
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ steps to install this library and enable TensorFlow for Go:
|
|||
TF_TYPE="cpu" # Change to "gpu" for GPU support
|
||||
TARGET_DIRECTORY='/usr/local'
|
||||
curl -L \
|
||||
"https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-1.2.0-rc0.tar.gz" |
|
||||
"https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-1.2.0-rc1.tar.gz" |
|
||||
sudo tar -C $TARGET_DIRECTORY -xz
|
||||
|
||||
The `tar` command extracts the TensorFlow C library into the `lib`
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ following to the project's `pom.xml` to use the TensorFlow Java APIs:
|
|||
<dependency>
|
||||
<groupId>org.tensorflow</groupId>
|
||||
<artifactId>tensorflow</artifactId>
|
||||
<version>1.2.0-rc0</version>
|
||||
<version>1.2.0-rc1</version>
|
||||
</dependency>
|
||||
```
|
||||
|
||||
|
|
@ -63,7 +63,7 @@ As an example, these steps will create a Maven project that uses TensorFlow:
|
|||
<dependency>
|
||||
<groupId>org.tensorflow</groupId>
|
||||
<artifactId>tensorflow</artifactId>
|
||||
<version>1.2.0-rc0</version>
|
||||
<version>1.2.0-rc1</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
</project>
|
||||
|
|
@ -122,7 +122,7 @@ refer to the simpler instructions above instead.
|
|||
Take the following steps to install TensorFlow for Java on Linux or Mac OS:
|
||||
|
||||
1. Download
|
||||
[libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.2.0-rc0.jar),
|
||||
[libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.2.0-rc1.jar),
|
||||
which is the TensorFlow Java Archive (JAR).
|
||||
|
||||
2. Decide whether you will run TensorFlow for Java on CPU(s) only or with
|
||||
|
|
@ -141,7 +141,7 @@ Take the following steps to install TensorFlow for Java on Linux or Mac OS:
|
|||
OS=$(uname -s | tr '[:upper:]' '[:lower:]')
|
||||
mkdir -p ./jni
|
||||
curl -L \
|
||||
"https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-${TF_TYPE}-${OS}-x86_64-1.2.0-rc0.tar.gz" |
|
||||
"https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-${TF_TYPE}-${OS}-x86_64-1.2.0-rc1.tar.gz" |
|
||||
tar -xz -C ./jni
|
||||
|
||||
### Install on Windows
|
||||
|
|
@ -149,10 +149,10 @@ Take the following steps to install TensorFlow for Java on Linux or Mac OS:
|
|||
Take the following steps to install TensorFlow for Java on Windows:
|
||||
|
||||
1. Download
|
||||
[libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.2.0-rc0.jar),
|
||||
[libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.2.0-rc1.jar),
|
||||
which is the TensorFlow Java Archive (JAR).
|
||||
2. Download the following Java Native Interface (JNI) file appropriate for
|
||||
[TensorFlow for Java on Windows](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-cpu-windows-x86_64-1.2.0-rc0.zip).
|
||||
[TensorFlow for Java on Windows](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-cpu-windows-x86_64-1.2.0-rc1.zip).
|
||||
3. Extract this .zip file.
|
||||
|
||||
|
||||
|
|
@ -200,7 +200,7 @@ must be part of your `classpath`. For example, you can include the
|
|||
downloaded `.jar` in your `classpath` by using the `-cp` compilation flag
|
||||
as follows:
|
||||
|
||||
<pre><b>javac -cp libtensorflow-1.2.0-rc0.jar HelloTF.java</b></pre>
|
||||
<pre><b>javac -cp libtensorflow-1.2.0-rc1.jar HelloTF.java</b></pre>
|
||||
|
||||
|
||||
### Running
|
||||
|
|
@ -214,11 +214,11 @@ two files are available to the JVM:
|
|||
For example, the following command line executes the `HelloTF` program on Linux
|
||||
and Mac OS X:
|
||||
|
||||
<pre><b>java -cp libtensorflow-1.2.0-rc0.jar:. -Djava.library.path=./jni HelloTF</b></pre>
|
||||
<pre><b>java -cp libtensorflow-1.2.0-rc1.jar:. -Djava.library.path=./jni HelloTF</b></pre>
|
||||
|
||||
And the following comand line executes the `HelloTF` program on Windows:
|
||||
|
||||
<pre><b>java -cp libtensorflow-1.2.0-rc0.jar;. -Djava.library.path=jni HelloTF</b></pre>
|
||||
<pre><b>java -cp libtensorflow-1.2.0-rc1.jar;. -Djava.library.path=jni HelloTF</b></pre>
|
||||
|
||||
If the program prints <tt>Hello from <i>version</i></tt>, you've successfully
|
||||
installed TensorFlow for Java and are ready to use the API. If the program
|
||||
|
|
|
|||
|
|
@ -154,6 +154,26 @@ Take the following steps to install TensorFlow with Virtualenv:
|
|||
If the preceding command succeeds, skip Step 5. If the preceding
|
||||
command fails, perform Step 5.
|
||||
|
||||
5. (Optional) If Step 4 failed (typically because you invoked a pip version
|
||||
lower than 8.1), install TensorFlow in the active virtualenv environment
|
||||
by issuing a command of the following format:
|
||||
|
||||
<pre> (tensorflow)$ <b>pip install --upgrade</b> <i>tfBinaryURL</i> # Python 2.7
|
||||
(tensorflow)$ <b>pip3 install --upgrade</b> <i>tfBinaryURL</i> # Python 3.n </pre>
|
||||
|
||||
where <code><em>tfBinaryURL</em></code> identifies the URL of the
|
||||
TensorFlow Python package. The appropriate value of
|
||||
<code><em>tfBinaryURL</em></code>depends on the operating system,
|
||||
Python version, and GPU support. Find the appropriate value for
|
||||
<code><em>tfBinaryURL</em></code> for your system
|
||||
[here](#the_url_of_the_tensorflow_python_package). For example, if you
|
||||
are installing TensorFlow for Linux, Python 2.7, and CPU-only support,
|
||||
issue the following command to install TensorFlow in the active
|
||||
virtualenv environment:
|
||||
|
||||
<pre>(tensorflow)$ <b>pip3 install --upgrade \
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp34-cp34m-linux_x86_64.whl</b></pre>
|
||||
|
||||
If you encounter installation problems, see
|
||||
[Common Installation Problems](#common_installation_problems).
|
||||
|
||||
|
|
@ -257,7 +277,7 @@ take the following steps:
|
|||
|
||||
<pre>
|
||||
$ <b>sudo pip3 install --upgrade \
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc0-cp34-cp34m-linux_x86_64.whl</b>
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp34-cp34m-linux_x86_64.whl</b>
|
||||
</pre>
|
||||
|
||||
If this step fails, see
|
||||
|
|
@ -444,7 +464,7 @@ Take the following steps to install TensorFlow in an Anaconda environment:
|
|||
|
||||
<pre>
|
||||
(tensorflow)$ <b>pip install --ignore-installed --upgrade \
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc0-cp34-cp34m-linux_x86_64.whl</b></pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp34-cp34m-linux_x86_64.whl</b></pre>
|
||||
|
||||
|
||||
<a name="ValidateYourInstallation"></a>
|
||||
|
|
@ -612,14 +632,14 @@ This section documents the relevant values for Linux installations.
|
|||
CPU only:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc0-cp27-none-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp27-none-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
|
||||
GPU support:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc0-cp27-none-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc1-cp27-none-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
Note that GPU support requires the NVIDIA hardware and software described in
|
||||
|
|
@ -631,14 +651,14 @@ Note that GPU support requires the NVIDIA hardware and software described in
|
|||
CPU only:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc0-cp34-cp34m-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp34-cp34m-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
|
||||
GPU support:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc0-cp34-cp34m-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc1-cp34-cp34m-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
Note that GPU support requires the NVIDIA hardware and software described in
|
||||
|
|
@ -650,14 +670,14 @@ Note that GPU support requires the NVIDIA hardware and software described in
|
|||
CPU only:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc0-cp35-cp35m-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp35-cp35m-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
|
||||
GPU support:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc0-cp35-cp35m-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc1-cp35-cp35m-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
|
||||
|
|
@ -669,14 +689,14 @@ Note that GPU support requires the NVIDIA hardware and software described in
|
|||
CPU only:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc0-cp36-cp36m-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0rc1-cp36-cp36m-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
|
||||
GPU support:
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc0-cp36-cp36m-linux_x86_64.whl
|
||||
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0rc1-cp36-cp36m-linux_x86_64.whl
|
||||
</pre>
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -91,6 +91,26 @@ Take the following steps to install TensorFlow with Virtualenv:
|
|||
<pre> (tensorflow)$ <b>pip install --upgrade tensorflow</b> # for Python 2.7
|
||||
(tensorflow)$ <b>pip3 install --upgrade tensorflow</b> # for Python 3.n
|
||||
|
||||
7. Optional. If Step 6 failed (typically because you invoked a pip version
|
||||
lower than 8.1), install TensorFlow in the active
|
||||
virtualenv environment by issuing a command of the following format:
|
||||
|
||||
<pre> $ <b>pip install --upgrade</b> <i>tfBinaryURL</i> # Python 2.7
|
||||
$ <b>pip3 install --upgrade</b> <i>tfBinaryURL</i> # Python 3.n </pre>
|
||||
|
||||
where <i>tfBinaryURL</i> identifies the URL
|
||||
of the TensorFlow Python package. The appropriate value of
|
||||
<i>tfBinaryURL</i> depends on the operating system and
|
||||
Python version. Find the appropriate value for
|
||||
<i>tfBinaryURL</i> for your system
|
||||
[here](#the_url_of_the_tensorflow_python_package).
|
||||
For example, if you are installing TensorFlow for Mac OS X,
|
||||
Python 2.7, the command to install
|
||||
TensorFlow in the active Virtualenv is as follows:
|
||||
|
||||
<pre> $ <b>pip3 install --upgrade \
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc1-py2-none-any.whl</b></pre>
|
||||
|
||||
If you encounter installation problems, see
|
||||
[Common Installation Problems](#common-installation-problems).
|
||||
|
||||
|
|
@ -210,7 +230,7 @@ take the following steps:
|
|||
issue the following command:
|
||||
|
||||
<pre> $ <b>sudo pip3 install --upgrade \
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc0-py2-none-any.whl</b> </pre>
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc1-py2-none-any.whl</b> </pre>
|
||||
|
||||
If the preceding command fails, see
|
||||
[installation problems](#common-installation-problems).
|
||||
|
|
@ -319,7 +339,7 @@ Take the following steps to install TensorFlow in an Anaconda environment:
|
|||
TensorFlow for Python 2.7:
|
||||
|
||||
<pre> (tensorflow)$ <b>pip install --ignore-installed --upgrade \
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc0-py2-none-any.whl</b></pre>
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc1-py2-none-any.whl</b></pre>
|
||||
|
||||
|
||||
<a name="ValidateYourInstallation"></a>
|
||||
|
|
@ -492,7 +512,7 @@ This section documents the relevant values for Mac OS installations.
|
|||
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc0-py2-none-any.whl
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc1-py2-none-any.whl
|
||||
</pre>
|
||||
|
||||
|
||||
|
|
@ -500,7 +520,7 @@ https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc0-py2-none-a
|
|||
|
||||
|
||||
<pre>
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc0-py3-none-any.whl
|
||||
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.0rc1-py3-none-any.whl
|
||||
</pre>
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -320,10 +320,10 @@ Invoke `pip install` to install that pip package.
|
|||
The filename of the `.whl` file depends on your platform.
|
||||
For example, the following command will install the pip package
|
||||
|
||||
for TensorFlow 1.2.0rc0 on Linux:
|
||||
for TensorFlow 1.2.0rc1 on Linux:
|
||||
|
||||
<pre>
|
||||
$ <b>sudo pip install /tmp/tensorflow_pkg/tensorflow-1.2.0rc0-py2-none-any.whl</b>
|
||||
$ <b>sudo pip install /tmp/tensorflow_pkg/tensorflow-1.2.0rc1-py2-none-any.whl</b>
|
||||
</pre>
|
||||
|
||||
## Validate your installation
|
||||
|
|
|
|||
|
|
@ -114,12 +114,12 @@ Take the following steps to install TensorFlow in an Anaconda environment:
|
|||
environment. To install the CPU-only version of TensorFlow, enter the
|
||||
following command:
|
||||
|
||||
<pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.2.0rc0-cp35-cp35m-win_amd64.whl</b> </pre>
|
||||
<pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.2.0rc1-cp35-cp35m-win_amd64.whl</b> </pre>
|
||||
|
||||
To install the GPU version of TensorFlow, enter the following command
|
||||
(on a single line):
|
||||
|
||||
<pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.2.0rc0-cp35-cp35m-win_amd64.whl</b> </pre>
|
||||
<pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.2.0rc1-cp35-cp35m-win_amd64.whl</b> </pre>
|
||||
|
||||
## Validate your installation
|
||||
|
||||
|
|
|
|||
|
|
@ -58,6 +58,7 @@ def build_md_page(page_info):
|
|||
def _build_function_page(page_info):
|
||||
"""Given a FunctionPageInfo object Return the page as an md string."""
|
||||
parts = [_Metadata(page_info.full_name).build_html()]
|
||||
parts.append('# %s\n\n' % page_info.full_name)
|
||||
|
||||
parts.append('# %s\n\n' % page_info.full_name)
|
||||
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ from setuptools.dist import Distribution
|
|||
# This version string is semver compatible, but incompatible with pip.
|
||||
# For pip, we will remove all '-' characters from this string, and use the
|
||||
# result for pip.
|
||||
_VERSION = '1.2.0-rc0'
|
||||
_VERSION = '1.2.0-rc1'
|
||||
|
||||
REQUIRED_PACKAGES = [
|
||||
'numpy >= 1.11.0',
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user