mirror of
https://github.com/zebrajr/tensorflow.git
synced 2025-12-06 12:20:11 +01:00
Fix some lint errors in image_ops_test.py and word2vec_basic.py
Change: 110727357
This commit is contained in:
parent
fc4063af80
commit
10f2363724
37
README.md
37
README.md
|
|
@ -16,11 +16,8 @@ organization for the purposes of conducting machine learning and deep neural
|
|||
networks research. The system is general enough to be applicable in a wide
|
||||
variety of other domains, as well.
|
||||
|
||||
|
||||
**Note: Currently we do not accept pull requests on github -- see
|
||||
[CONTRIBUTING.md](CONTRIBUTING.md) for information on how to contribute code
|
||||
changes to TensorFlow through
|
||||
[tensorflow.googlesource.com](https://tensorflow.googlesource.com/tensorflow)**
|
||||
**If you'd like to contribute to tensorflow, be sure to review the [contribution
|
||||
guidelines](CONTRIBUTING.md).**
|
||||
|
||||
**We use [github issues](https://github.com/tensorflow/tensorflow/issues) for
|
||||
tracking requests and bugs, but please see
|
||||
|
|
@ -29,35 +26,7 @@ and discussion.**
|
|||
|
||||
# Download and Setup
|
||||
|
||||
To install the CPU version of TensorFlow using a binary package, see the
|
||||
instructions below. For more detailed installation instructions, including
|
||||
installing from source, GPU-enabled support, etc., see
|
||||
[here](tensorflow/g3doc/get_started/os_setup.md).
|
||||
|
||||
## Binary Installation
|
||||
|
||||
The TensorFlow Python API supports Python 2.7 and Python 3.3+.
|
||||
|
||||
The simplest way to install TensorFlow is using
|
||||
[pip](https://pypi.python.org/pypi/pip) for both Linux and Mac.
|
||||
|
||||
For the GPU-enabled version, or if you encounter installation errors, or for
|
||||
more detailed installation instructions, see
|
||||
[here](tensorflow/g3doc/get_started/os_setup.md#detailed_install).
|
||||
|
||||
### Ubuntu/Linux 64-bit
|
||||
|
||||
```bash
|
||||
# For CPU-only version
|
||||
$ pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
|
||||
```
|
||||
|
||||
### Mac OS X
|
||||
|
||||
```bash
|
||||
# Only CPU-version is available at the moment.
|
||||
$ pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
|
||||
```
|
||||
See [install instructions](tensorflow/g3doc/get_started/os_setup.md).
|
||||
|
||||
### Try your first TensorFlow program
|
||||
|
||||
|
|
|
|||
|
|
@ -349,6 +349,7 @@ tf_gpu_kernel_library(
|
|||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":cuda",
|
||||
":framework",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
|
|
|||
|
|
@ -144,11 +144,8 @@ class ResizeAreaOp : public OpKernel {
|
|||
.HostMemory("size"), \
|
||||
ResizeAreaOp<CPUDevice, T>);
|
||||
|
||||
REGISTER_KERNEL(uint8);
|
||||
REGISTER_KERNEL(int8);
|
||||
REGISTER_KERNEL(int32);
|
||||
REGISTER_KERNEL(float);
|
||||
REGISTER_KERNEL(double);
|
||||
TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);
|
||||
|
||||
#undef REGISTER_KERNEL
|
||||
|
||||
} // namespace tensorflow
|
||||
|
|
|
|||
|
|
@ -131,11 +131,8 @@ class ResizeBicubicOp : public OpKernel {
|
|||
.HostMemory("size"), \
|
||||
ResizeBicubicOp<CPUDevice, T>);
|
||||
|
||||
REGISTER_KERNEL(uint8);
|
||||
REGISTER_KERNEL(int8);
|
||||
REGISTER_KERNEL(int32);
|
||||
REGISTER_KERNEL(float);
|
||||
REGISTER_KERNEL(double);
|
||||
TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);
|
||||
|
||||
#undef REGISTER_KERNEL
|
||||
|
||||
} // namespace tensorflow
|
||||
|
|
|
|||
|
|
@ -215,11 +215,8 @@ class ResizeBilinearOpGrad : public OpKernel {
|
|||
.HostMemory("size"), \
|
||||
ResizeBilinearOp<CPUDevice, T>);
|
||||
|
||||
REGISTER_KERNEL(uint8);
|
||||
REGISTER_KERNEL(int8);
|
||||
REGISTER_KERNEL(int32);
|
||||
REGISTER_KERNEL(float);
|
||||
REGISTER_KERNEL(double);
|
||||
TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);
|
||||
|
||||
#undef REGISTER_KERNEL
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("ResizeBilinearGrad")
|
||||
|
|
|
|||
|
|
@ -178,11 +178,8 @@ class ResizeNearestNeighborOpGrad : public OpKernel {
|
|||
.HostMemory("size"), \
|
||||
ResizeNearestNeighborOpGrad<CPUDevice, T>);
|
||||
|
||||
REGISTER_KERNEL(uint8);
|
||||
REGISTER_KERNEL(int8);
|
||||
REGISTER_KERNEL(int32);
|
||||
REGISTER_KERNEL(float);
|
||||
REGISTER_KERNEL(double);
|
||||
TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);
|
||||
|
||||
#undef REGISTER_KERNEL
|
||||
|
||||
} // namespace tensorflow
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ REGISTER_OP("ResizeArea")
|
|||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: float")
|
||||
.Attr("T: {uint8, int8, int32, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using area interpolation.
|
||||
|
||||
|
|
@ -40,7 +40,7 @@ REGISTER_OP("ResizeBicubic")
|
|||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: float")
|
||||
.Attr("T: {uint8, int8, int32, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using bicubic interpolation.
|
||||
|
||||
|
|
@ -58,7 +58,7 @@ REGISTER_OP("ResizeBilinear")
|
|||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: float")
|
||||
.Attr("T: {uint8, int8, int32, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using bilinear interpolation.
|
||||
|
||||
|
|
@ -93,7 +93,7 @@ REGISTER_OP("ResizeNearestNeighbor")
|
|||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: T")
|
||||
.Attr("T: {uint8, int8, int32, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using nearest neighbor interpolation.
|
||||
|
||||
|
|
|
|||
|
|
@ -5949,7 +5949,9 @@ op {
|
|||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
|
|
@ -5982,7 +5984,9 @@ op {
|
|||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
|
|
@ -6015,7 +6019,9 @@ op {
|
|||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
|
|
@ -6077,7 +6083,9 @@ op {
|
|||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
|
|
|
|||
|
|
@ -141,16 +141,18 @@ with graph.as_default():
|
|||
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
|
||||
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
|
||||
|
||||
# Construct the variables.
|
||||
embeddings = tf.Variable(
|
||||
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
|
||||
nce_weights = tf.Variable(
|
||||
tf.truncated_normal([vocabulary_size, embedding_size],
|
||||
stddev=1.0 / math.sqrt(embedding_size)))
|
||||
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
|
||||
# Ops and variables pinned to the CPU because of missing GPU implementation
|
||||
with tf.device('/cpu:0'):
|
||||
# Look up embeddings for inputs.
|
||||
embeddings = tf.Variable(
|
||||
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
|
||||
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
|
||||
|
||||
# Look up embeddings for inputs.
|
||||
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
|
||||
# Construct the variables for the NCE loss
|
||||
nce_weights = tf.Variable(
|
||||
tf.truncated_normal([vocabulary_size, embedding_size],
|
||||
stddev=1.0 / math.sqrt(embedding_size)))
|
||||
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
|
||||
|
||||
# Compute the average NCE loss for the batch.
|
||||
# tf.nce_loss automatically draws a new sample of the negative labels each
|
||||
|
|
|
|||
|
|
@ -1408,7 +1408,7 @@ and Python scalars. For example:
|
|||
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.random.rand((32, 100, 100))
|
||||
array = np.random.rand(32, 100, 100)
|
||||
|
||||
def my_func(arg):
|
||||
arg = tf.convert_to_tensor(arg, dtype=tf.float32)
|
||||
|
|
|
|||
|
|
@ -54,14 +54,14 @@ Data type | Python type | Description
|
|||
--- | --- | ---
|
||||
`DT_FLOAT` | `tf.float32` | 32 bits floating point.
|
||||
`DT_DOUBLE` | `tf.float64` | 64 bits floating point.
|
||||
`DT_INT64` | `tf.int64` | 64 bits signed integer.
|
||||
`DT_INT32` | `tf.int32` | 32 bits signed integer.
|
||||
`DT_INT16` | `tf.int16` | 16 bits signed integer.
|
||||
`DT_INT8` | `tf.int8` | 8 bits signed integer.
|
||||
`DT_INT16` | `tf.int16` | 16 bits signed integer.
|
||||
`DT_INT32` | `tf.int32` | 32 bits signed integer.
|
||||
`DT_INT64` | `tf.int64` | 64 bits signed integer.
|
||||
`DT_UINT8` | `tf.uint8` | 8 bits unsigned integer.
|
||||
`DT_STRING` | `tf.string` | Variable length byte arrays. Each element of a Tensor is a byte array.
|
||||
`DT_BOOL` | `tf.bool` | Boolean.
|
||||
`DT_COMPLEX64` | `tf.complex64` | Complex number made of two 32 bits floating points: real and imaginary parts.
|
||||
`DT_QINT32` | `tf.qint32` | 32 bits signed integer used in quantized Ops.
|
||||
`DT_QINT8` | `tf.qint8` | 8 bits signed integer used in quantized Ops.
|
||||
`DT_QUINT8` | `tf.quint8` | 8 bits unsigned integer used in quantized Ops.
|
||||
`DT_QINT32` | `tf.qint32` | 32 bits signed integer used in quantized Ops.
|
||||
`DT_QUINT8` | `tf.quint8` | 8 bits unsigned integer used in quantized Ops.
|
||||
|
|
@ -126,7 +126,7 @@ artificially increase the data set size:
|
|||
|
||||
* [Randomly flip](../../api_docs/python/image.md#random_flip_left_right) the image from left to right.
|
||||
* Randomly distort the [image brightness](../../api_docs/python/image.md#random_brightness).
|
||||
* Randomly distort the [image contrast](../../api_docs/python/image.md#tf_image_random_contrast).
|
||||
* Randomly distort the [image contrast](../../api_docs/python/image.md#random_contrast).
|
||||
|
||||
Please see the [Images](../../api_docs/python/image.md) page for the list of
|
||||
available distortions. We also attach an
|
||||
|
|
|
|||
|
|
@ -486,7 +486,7 @@ def convert_to_tensor(value, dtype=None, name=None, as_ref=False):
|
|||
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.random.rand((32, 100, 100))
|
||||
array = np.random.rand(32, 100, 100)
|
||||
|
||||
def my_func(arg):
|
||||
arg = tf.convert_to_tensor(arg, dtype=tf.float32)
|
||||
|
|
|
|||
|
|
@ -564,49 +564,56 @@ class ResizeImagesTest(test_util.TensorFlowTestCase):
|
|||
image_ops.ResizeMethod.BICUBIC,
|
||||
image_ops.ResizeMethod.AREA]
|
||||
|
||||
TYPES = [np.uint8, np.int8, np.int16, np.int32, np.int64,
|
||||
np.float, np.double]
|
||||
|
||||
def testNoOp(self):
|
||||
img_shape = [1, 6, 4, 1]
|
||||
single_shape = [6, 4, 1]
|
||||
data = [128, 128, 64, 64,
|
||||
128, 128, 64, 64,
|
||||
64, 64, 128, 128,
|
||||
64, 64, 128, 128,
|
||||
# This test is also conducted with int8, so 127 is the maximum
|
||||
# value that can be used.
|
||||
data = [127, 127, 64, 64,
|
||||
127, 127, 64, 64,
|
||||
64, 64, 127, 127,
|
||||
64, 64, 127, 127,
|
||||
50, 50, 100, 100,
|
||||
50, 50, 100, 100]
|
||||
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
|
||||
|
||||
target_height = 6
|
||||
target_width = 4
|
||||
|
||||
for opt in self.OPTIONS:
|
||||
with self.test_session() as sess:
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width, opt)
|
||||
yshape = array_ops.shape(y)
|
||||
resized, newshape = sess.run([y, yshape])
|
||||
self.assertAllEqual(img_shape, newshape)
|
||||
self.assertAllClose(resized, img_np, atol=1e-5)
|
||||
for nptype in self.TYPES:
|
||||
img_np = np.array(data, dtype=nptype).reshape(img_shape)
|
||||
|
||||
# Resizing with a single image must leave the shape unchanged also.
|
||||
with self.test_session():
|
||||
img_single = img_np.reshape(single_shape)
|
||||
image = constant_op.constant(img_single, shape=single_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width,
|
||||
self.OPTIONS[0])
|
||||
yshape = array_ops.shape(y)
|
||||
newshape = yshape.eval()
|
||||
self.assertAllEqual(single_shape, newshape)
|
||||
for opt in self.OPTIONS:
|
||||
with self.test_session() as sess:
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width, opt)
|
||||
yshape = array_ops.shape(y)
|
||||
resized, newshape = sess.run([y, yshape])
|
||||
self.assertAllEqual(img_shape, newshape)
|
||||
self.assertAllClose(resized, img_np, atol=1e-5)
|
||||
|
||||
# Resizing with a single image must leave the shape unchanged also.
|
||||
with self.test_session():
|
||||
img_single = img_np.reshape(single_shape)
|
||||
image = constant_op.constant(img_single, shape=single_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width,
|
||||
self.OPTIONS[0])
|
||||
yshape = array_ops.shape(y)
|
||||
newshape = yshape.eval()
|
||||
self.assertAllEqual(single_shape, newshape)
|
||||
|
||||
def testResizeDown(self):
|
||||
|
||||
data = [128, 128, 64, 64,
|
||||
128, 128, 64, 64,
|
||||
64, 64, 128, 128,
|
||||
64, 64, 128, 128,
|
||||
# This test is also conducted with int8, so 127 is the maximum
|
||||
# value that can be used.
|
||||
data = [127, 127, 64, 64,
|
||||
127, 127, 64, 64,
|
||||
64, 64, 127, 127,
|
||||
64, 64, 127, 127,
|
||||
50, 50, 100, 100,
|
||||
50, 50, 100, 100]
|
||||
expected_data = [128, 64,
|
||||
64, 128,
|
||||
expected_data = [127, 64,
|
||||
64, 127,
|
||||
50, 100]
|
||||
target_height = 3
|
||||
target_width = 2
|
||||
|
|
@ -617,59 +624,61 @@ class ResizeImagesTest(test_util.TensorFlowTestCase):
|
|||
[target_height, target_width, 1]]
|
||||
|
||||
for target_shape, img_shape in zip(target_shapes, img_shapes):
|
||||
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
|
||||
|
||||
for opt in self.OPTIONS:
|
||||
with self.test_session():
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width, opt)
|
||||
expected = np.array(expected_data).reshape(target_shape)
|
||||
resized = y.eval()
|
||||
self.assertAllClose(resized, expected, atol=1e-5)
|
||||
for nptype in self.TYPES:
|
||||
img_np = np.array(data, dtype=nptype).reshape(img_shape)
|
||||
|
||||
for opt in self.OPTIONS:
|
||||
with self.test_session():
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width, opt)
|
||||
expected = np.array(expected_data).reshape(target_shape)
|
||||
resized = y.eval()
|
||||
self.assertAllClose(resized, expected, atol=1e-5)
|
||||
|
||||
def testResizeUp(self):
|
||||
img_shape = [1, 3, 2, 1]
|
||||
data = [128, 64,
|
||||
64, 128,
|
||||
data = [64, 32,
|
||||
32, 64,
|
||||
50, 100]
|
||||
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
|
||||
|
||||
target_height = 6
|
||||
target_width = 4
|
||||
expected_data = {}
|
||||
expected_data[image_ops.ResizeMethod.BILINEAR] = [
|
||||
128.0, 96.0, 64.0, 64.0,
|
||||
96.0, 96.0, 96.0, 96.0,
|
||||
64.0, 96.0, 128.0, 128.0,
|
||||
57.0, 85.5, 114.0, 114.0,
|
||||
64.0, 48.0, 32.0, 32.0,
|
||||
48.0, 48.0, 48.0, 48.0,
|
||||
32.0, 48.0, 64.0, 64.0,
|
||||
41.0, 61.5, 82.0, 82.0,
|
||||
50.0, 75.0, 100.0, 100.0,
|
||||
50.0, 75.0, 100.0, 100.0]
|
||||
expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
|
||||
128.0, 128.0, 64.0, 64.0,
|
||||
128.0, 128.0, 64.0, 64.0,
|
||||
64.0, 64.0, 128.0, 128.0,
|
||||
64.0, 64.0, 128.0, 128.0,
|
||||
64.0, 64.0, 32.0, 32.0,
|
||||
64.0, 64.0, 32.0, 32.0,
|
||||
32.0, 32.0, 64.0, 64.0,
|
||||
32.0, 32.0, 64.0, 64.0,
|
||||
50.0, 50.0, 100.0, 100.0,
|
||||
50.0, 50.0, 100.0, 100.0]
|
||||
expected_data[image_ops.ResizeMethod.AREA] = [
|
||||
128.0, 128.0, 64.0, 64.0,
|
||||
128.0, 128.0, 64.0, 64.0,
|
||||
64.0, 64.0, 128.0, 128.0,
|
||||
64.0, 64.0, 128.0, 128.0,
|
||||
64.0, 64.0, 32.0, 32.0,
|
||||
64.0, 64.0, 32.0, 32.0,
|
||||
32.0, 32.0, 64.0, 64.0,
|
||||
32.0, 32.0, 64.0, 64.0,
|
||||
50.0, 50.0, 100.0, 100.0,
|
||||
50.0, 50.0, 100.0, 100.0]
|
||||
|
||||
for opt in [
|
||||
image_ops.ResizeMethod.BILINEAR,
|
||||
image_ops.ResizeMethod.NEAREST_NEIGHBOR,
|
||||
image_ops.ResizeMethod.AREA]:
|
||||
with self.test_session():
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width, opt)
|
||||
resized = y.eval()
|
||||
expected = np.array(expected_data[opt]).reshape(
|
||||
[1, target_height, target_width, 1])
|
||||
self.assertAllClose(resized, expected, atol=1e-05)
|
||||
for nptype in self.TYPES:
|
||||
for opt in [
|
||||
image_ops.ResizeMethod.BILINEAR,
|
||||
image_ops.ResizeMethod.NEAREST_NEIGHBOR,
|
||||
image_ops.ResizeMethod.AREA]:
|
||||
with self.test_session():
|
||||
img_np = np.array(data, dtype=nptype).reshape(img_shape)
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, target_height, target_width, opt)
|
||||
resized = y.eval()
|
||||
expected = np.array(expected_data[opt]).reshape(
|
||||
[1, target_height, target_width, 1])
|
||||
self.assertAllClose(resized, expected, atol=1e-05)
|
||||
|
||||
def testResizeUpBicubic(self):
|
||||
img_shape = [1, 6, 6, 1]
|
||||
|
|
|
|||
|
|
@ -187,7 +187,7 @@ class Template(object):
|
|||
"meant tf.get_variable: %s",
|
||||
variables[vars_at_start:])
|
||||
return result
|
||||
except Exception, exc:
|
||||
except Exception as exc:
|
||||
# Reraise the exception, but append the original definition to the
|
||||
# trace.
|
||||
args = exc.args
|
||||
|
|
|
|||
|
|
@ -70,7 +70,7 @@ class Coordinator(object):
|
|||
try:
|
||||
while not coord.should_stop():
|
||||
...do some work...
|
||||
except Exception, e:
|
||||
except Exception as e:
|
||||
coord.request_stop(e)
|
||||
```
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ class Coordinator(object):
|
|||
...start thread N...(coord, ...)
|
||||
# Wait for all the threads to terminate.
|
||||
coord.join(threads)
|
||||
except Exception, e:
|
||||
except Exception as e:
|
||||
...exception that was passed to coord.request_stop()
|
||||
```
|
||||
|
||||
|
|
@ -188,7 +188,7 @@ class Coordinator(object):
|
|||
```python
|
||||
try:
|
||||
...body...
|
||||
exception Exception, ex:
|
||||
exception Exception as ex:
|
||||
coord.request_stop(ex)
|
||||
```
|
||||
|
||||
|
|
@ -198,7 +198,7 @@ class Coordinator(object):
|
|||
# pylint: disable=broad-except
|
||||
try:
|
||||
yield
|
||||
except Exception, ex:
|
||||
except Exception as ex:
|
||||
self.request_stop(ex)
|
||||
# pylint: enable=broad-except
|
||||
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ cc_library(
|
|||
),
|
||||
hdrs = glob([
|
||||
"*.h",
|
||||
"cuda/*.h",
|
||||
"lib/*.h",
|
||||
"platform/**/*.h",
|
||||
]),
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user