Introduce PyMetric as an experimental Keras API.

PiperOrigin-RevId: 508696238
This commit is contained in:
A. Unique TensorFlower 2023-02-10 10:33:01 -08:00 committed by TensorFlower Gardener
parent 66c959717c
commit 08c9c1d88f
3 changed files with 267 additions and 0 deletions

View File

@ -22,6 +22,11 @@
* Added F-Score metrics `tf.keras.metrics.FBetaScore`,
`tf.keras.metrics.F1Score`, and `tf.keras.metrics.R2Score`.
* Added activation function `tf.keras.activations.mish`.
* Added experimental `keras.metrics.experimental.PyMetric` API for metrics
that run Python code on the host CPU (compiled outside of the TensorFlow
graph). This can be used for integrating metrics from external Python
libraries (like sklearn or pycocotools) into Keras as first-class Keras
metrics.
# Bug Fixes and Other Changes

View File

@ -0,0 +1,255 @@
path: "tensorflow.metrics.experimental.PyMetric"
tf_class {
is_instance: "<class \'keras.metrics.py_metric.PyMetric\'>"
is_instance: "<class \'keras.metrics.base_metric.Metric\'>"
is_instance: "<class \'keras.engine.base_layer.Layer\'>"
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
is_instance: "<class \'tensorflow.python.trackable.autotrackable.AutoTrackable\'>"
is_instance: "<class \'tensorflow.python.trackable.base.Trackable\'>"
is_instance: "<class \'keras.utils.version_utils.LayerVersionSelector\'>"
is_instance: "<type \'object\'>"
member {
name: "activity_regularizer"
mtype: "<type \'property\'>"
}
member {
name: "compute_dtype"
mtype: "<type \'property\'>"
}
member {
name: "dtype"
mtype: "<type \'property\'>"
}
member {
name: "dtype_policy"
mtype: "<type \'property\'>"
}
member {
name: "dynamic"
mtype: "<type \'property\'>"
}
member {
name: "inbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "input"
mtype: "<type \'property\'>"
}
member {
name: "input_mask"
mtype: "<type \'property\'>"
}
member {
name: "input_shape"
mtype: "<type \'property\'>"
}
member {
name: "input_spec"
mtype: "<type \'property\'>"
}
member {
name: "losses"
mtype: "<type \'property\'>"
}
member {
name: "metrics"
mtype: "<type \'property\'>"
}
member {
name: "name"
mtype: "<type \'property\'>"
}
member {
name: "name_scope"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "outbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "output"
mtype: "<type \'property\'>"
}
member {
name: "output_mask"
mtype: "<type \'property\'>"
}
member {
name: "output_shape"
mtype: "<type \'property\'>"
}
member {
name: "stateful"
mtype: "<type \'property\'>"
}
member {
name: "submodules"
mtype: "<type \'property\'>"
}
member {
name: "supports_masking"
mtype: "<type \'property\'>"
}
member {
name: "trainable"
mtype: "<type \'property\'>"
}
member {
name: "trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "updates"
mtype: "<type \'property\'>"
}
member {
name: "variable_dtype"
mtype: "<type \'property\'>"
}
member {
name: "variables"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], "
}
member_method {
name: "add_loss"
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
}
member_method {
name: "add_metric"
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
}
member_method {
name: "add_update"
argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "add_variable"
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], "
}
member_method {
name: "build"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "build_from_config"
argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "call"
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "compute_mask"
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "compute_output_shape"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "compute_output_signature"
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "count_params"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "finalize_state"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_build_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "merge_state"
argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "reset_state"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "reset_states"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "result"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "update_state"
argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "with_name_scope"
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,7 @@
path: "tensorflow.metrics.experimental"
tf_module {
member {
name: "PyMetric"
mtype: "<type \'type\'>"
}
}