mirror of
https://github.com/zebrajr/tensorflow.git
synced 2025-12-07 12:20:24 +01:00
Introduce tf.data namespace.
PiperOrigin-RevId: 170939033
This commit is contained in:
parent
0c8dbc1fda
commit
0068086b9a
|
|
@ -1,8 +1,10 @@
|
|||
`tf.contrib.data` API
|
||||
=====================
|
||||
|
||||
NOTE: The `tf.contrib.data` module has been deprecated. Use `tf.data` instead.
|
||||
|
||||
This directory contains the Python API for the `tf.contrib.data.Dataset` and
|
||||
`tf.contrib.data.Iterator` classes, which can be used to build input pipelines.
|
||||
|
||||
The documentation for this API has moved to the programmers'
|
||||
The documentation for `tf.data` API has moved to the programmers'
|
||||
guide, [here](../../docs_src/programmers_guide/datasets.md).
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ complicated transformations.
|
|||
|
||||
The `Dataset` API introduces two new abstractions to TensorFlow:
|
||||
|
||||
* A `tf.contrib.data.Dataset` represents a sequence of elements, in which
|
||||
* A `tf.data.Dataset` represents a sequence of elements, in which
|
||||
each element contains one or more `Tensor` objects. For example, in an image
|
||||
pipeline, an element might be a single training example, with a pair of
|
||||
tensors representing the image data and a label. There are two distinct
|
||||
|
|
@ -23,9 +23,9 @@ The `Dataset` API introduces two new abstractions to TensorFlow:
|
|||
one or more `tf.Tensor` objects.
|
||||
|
||||
* Applying a **transformation** (e.g. `Dataset.batch()`) constructs a dataset
|
||||
from one or more `tf.contrib.data.Dataset` objects.
|
||||
from one or more `tf.data.Dataset` objects.
|
||||
|
||||
* A `tf.contrib.data.Iterator` provides the main way to extract elements from a
|
||||
* A `tf.data.Iterator` provides the main way to extract elements from a
|
||||
dataset. The operation returned by `Iterator.get_next()` yields the next
|
||||
element of a `Dataset` when executed, and typically acts as the interface
|
||||
between input pipeline code and your model. The simplest iterator is a
|
||||
|
|
@ -42,22 +42,22 @@ of `Dataset` and `Iterator` objects, and how to extract data from them.
|
|||
|
||||
To start an input pipeline, you must define a *source*. For example, to
|
||||
construct a `Dataset` from some tensors in memory, you can use
|
||||
`tf.contrib.data.Dataset.from_tensors()` or
|
||||
`tf.contrib.data.Dataset.from_tensor_slices()`. Alternatively, if your input
|
||||
`tf.data.Dataset.from_tensors()` or
|
||||
`tf.data.Dataset.from_tensor_slices()`. Alternatively, if your input
|
||||
data are on disk in the recommend TFRecord format, you can construct a
|
||||
`tf.contrib.data.TFRecordDataset`.
|
||||
`tf.data.TFRecordDataset`.
|
||||
|
||||
Once you have a `Dataset` object, you can *transform* it into a new `Dataset` by
|
||||
chaining method calls on the `tf.contrib.data.Dataset` object. For example, you
|
||||
chaining method calls on the `tf.data.Dataset` object. For example, you
|
||||
can apply per-element transformations such as `Dataset.map()` (to apply a
|
||||
function to each element), and multi-element transformations such as
|
||||
`Dataset.batch()`. See the documentation for @{tf.contrib.data.Dataset}
|
||||
`Dataset.batch()`. See the documentation for @{tf.data.Dataset}
|
||||
for a complete list of transformations.
|
||||
|
||||
The most common way to consume values from a `Dataset` is to make an
|
||||
**iterator** object that provides access to one element of the dataset at a time
|
||||
(for example, by calling `Dataset.make_one_shot_iterator()`). A
|
||||
`tf.contrib.data.Iterator` provides two operations: `Iterator.initializer`,
|
||||
`tf.data.Iterator` provides two operations: `Iterator.initializer`,
|
||||
which enables you to (re)initialize the iterator's state; and
|
||||
`Iterator.get_next()`, which returns `tf.Tensor` objects that correspond to the
|
||||
symbolic next element. Depending on your use case, you might choose a different
|
||||
|
|
@ -76,17 +76,17 @@ of an element, which may be a single tensor, a tuple of tensors, or a nested
|
|||
tuple of tensors. For example:
|
||||
|
||||
```python
|
||||
dataset1 = tf.contrib.data.Dataset.from_tensor_slices(tf.random_uniform([4, 10]))
|
||||
dataset1 = tf.data.Dataset.from_tensor_slices(tf.random_uniform([4, 10]))
|
||||
print(dataset1.output_types) # ==> "tf.float32"
|
||||
print(dataset1.output_shapes) # ==> "(10,)"
|
||||
|
||||
dataset2 = tf.contrib.data.Dataset.from_tensor_slices(
|
||||
dataset2 = tf.data.Dataset.from_tensor_slices(
|
||||
(tf.random_uniform([4]),
|
||||
tf.random_uniform([4, 100], maxval=100, dtype=tf.int32)))
|
||||
print(dataset2.output_types) # ==> "(tf.float32, tf.int32)"
|
||||
print(dataset2.output_shapes) # ==> "((), (100,))"
|
||||
|
||||
dataset3 = tf.contrib.data.Dataset.zip((dataset1, dataset2))
|
||||
dataset3 = tf.data.Dataset.zip((dataset1, dataset2))
|
||||
print(dataset3.output_types) # ==> (tf.float32, (tf.float32, tf.int32))
|
||||
print(dataset3.output_shapes) # ==> "(10, ((), (100,)))"
|
||||
```
|
||||
|
|
@ -97,7 +97,7 @@ to tuples, you can use `collections.namedtuple` or a dictionary mapping strings
|
|||
to tensors to represent a single element of a `Dataset`.
|
||||
|
||||
```python
|
||||
dataset = tf.contrib.data.Dataset.from_tensor_slices(
|
||||
dataset = tf.data.Dataset.from_tensor_slices(
|
||||
{"a": tf.random_uniform([4]),
|
||||
"b": tf.random_uniform([4, 100], maxval=100, dtype=tf.int32)})
|
||||
print(dataset.output_types) # ==> "{'a': tf.float32, 'b': tf.int32}"
|
||||
|
|
@ -137,7 +137,7 @@ input pipelines support, but they do not support parameterization. Using the
|
|||
example of `Dataset.range()`:
|
||||
|
||||
```python
|
||||
dataset = tf.contrib.data.Dataset.range(100)
|
||||
dataset = tf.data.Dataset.range(100)
|
||||
iterator = dataset.make_one_shot_iterator()
|
||||
next_element = iterator.get_next()
|
||||
|
||||
|
|
@ -157,7 +157,7 @@ initialize the iterator. Continuing the `Dataset.range()` example:
|
|||
|
||||
```python
|
||||
max_value = tf.placeholder(tf.int64, shape=[])
|
||||
dataset = tf.contrib.data.Dataset.range(max_value)
|
||||
dataset = tf.data.Dataset.range(max_value)
|
||||
iterator = dataset.make_initializable_iterator()
|
||||
next_element = iterator.get_next()
|
||||
|
||||
|
|
@ -183,9 +183,9 @@ structure (i.e. the same types and compatible shapes for each component).
|
|||
|
||||
```python
|
||||
# Define training and validation datasets with the same structure.
|
||||
training_dataset = tf.contrib.data.Dataset.range(100).map(
|
||||
training_dataset = tf.data.Dataset.range(100).map(
|
||||
lambda x: x + tf.random_uniform([], -10, 10, tf.int64))
|
||||
validation_dataset = tf.contrib.data.Dataset.range(50)
|
||||
validation_dataset = tf.data.Dataset.range(50)
|
||||
|
||||
# A reinitializable iterator is defined by its structure. We could use the
|
||||
# `output_types` and `output_shapes` properties of either `training_dataset`
|
||||
|
|
@ -217,21 +217,21 @@ what `Iterator` to use in each call to @{tf.Session.run}, via the familiar
|
|||
iterator, but it does not require you to initialize the iterator from the start
|
||||
of a dataset when you switch between iterators. For example, using the same
|
||||
training and validation example from above, you can use
|
||||
@{tf.contrib.data.Iterator.from_string_handle} to define a feedable iterator
|
||||
@{tf.data.Iterator.from_string_handle} to define a feedable iterator
|
||||
that allows you to switch between the two datasets:
|
||||
|
||||
```python
|
||||
# Define training and validation datasets with the same structure.
|
||||
training_dataset = tf.contrib.data.Dataset.range(100).map(
|
||||
training_dataset = tf.data.Dataset.range(100).map(
|
||||
lambda x: x + tf.random_uniform([], -10, 10, tf.int64)).repeat()
|
||||
validation_dataset = tf.contrib.data.Dataset.range(50)
|
||||
validation_dataset = tf.data.Dataset.range(50)
|
||||
|
||||
# A feedable iterator is defined by a handle placeholder and its structure. We
|
||||
# could use the `output_types` and `output_shapes` properties of either
|
||||
# `training_dataset` or `validation_dataset` here, because they have
|
||||
# identical structure.
|
||||
handle = tf.placeholder(tf.string, shape=[])
|
||||
iterator = tf.contrib.data.Iterator.from_string_handle(
|
||||
iterator = tf.data.Iterator.from_string_handle(
|
||||
handle, training_dataset.output_types, training_dataset.output_shapes)
|
||||
next_element = iterator.get_next()
|
||||
|
||||
|
|
@ -276,7 +276,7 @@ After this point the iterator will be in an unusable state, and you must
|
|||
initialize it again if you want to use it further.
|
||||
|
||||
```python
|
||||
dataset = tf.contrib.data.Dataset.range(5)
|
||||
dataset = tf.data.Dataset.range(5)
|
||||
iterator = dataset.make_initializable_iterator()
|
||||
next_element = iterator.get_next()
|
||||
|
||||
|
|
@ -312,9 +312,9 @@ If each element of the dataset has a nested structure, the return value of
|
|||
nested structure:
|
||||
|
||||
```python
|
||||
dataset1 = tf.contrib.data.Dataset.from_tensor_slices(tf.random_uniform([4, 10]))
|
||||
dataset2 = tf.contrib.data.Dataset.from_tensor_slices((tf.random_uniform([4]), tf.random_uniform([4, 100])))
|
||||
dataset3 = tf.contrib.data.Dataset.zip((dataset1, dataset2))
|
||||
dataset1 = tf.data.Dataset.from_tensor_slices(tf.random_uniform([4, 10]))
|
||||
dataset2 = tf.data.Dataset.from_tensor_slices((tf.random_uniform([4]), tf.random_uniform([4, 100])))
|
||||
dataset3 = tf.data.Dataset.zip((dataset1, dataset2))
|
||||
|
||||
iterator = dataset3.make_initializable_iterator()
|
||||
|
||||
|
|
@ -343,7 +343,7 @@ with np.load("/var/data/training_data.npy") as data:
|
|||
# Assume that each row of `features` corresponds to the same row as `labels`.
|
||||
assert features.shape[0] == labels.shape[0]
|
||||
|
||||
dataset = tf.contrib.data.Dataset.from_tensor_slices((features, labels))
|
||||
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
|
||||
```
|
||||
|
||||
Note that the above code snippet will embed the `features` and `labels` arrays
|
||||
|
|
@ -368,7 +368,7 @@ assert features.shape[0] == labels.shape[0]
|
|||
features_placeholder = tf.placeholder(features.dtype, features.shape)
|
||||
labels_placeholder = tf.placeholder(labels.dtype, labels.shape)
|
||||
|
||||
dataset = tf.contrib.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
|
||||
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
|
||||
# [Other transformations on `dataset`...]
|
||||
dataset = ...
|
||||
iterator = dataset.make_initializable_iterator()
|
||||
|
|
@ -382,14 +382,14 @@ sess.run(iterator.initializer, feed_dict={features_placeholder: features,
|
|||
The `Dataset` API supports a variety of file formats so that you can process
|
||||
large datasets that do not fit in memory. For example, the TFRecord file format
|
||||
is a simple record-oriented binary format that many TensorFlow applications use
|
||||
for training data. The `tf.contrib.data.TFRecordDataset` class enables you to
|
||||
for training data. The `tf.data.TFRecordDataset` class enables you to
|
||||
stream over the contents of one or more TFRecord files as part of an input
|
||||
pipeline.
|
||||
|
||||
```python
|
||||
# Creates a dataset that reads all of the examples from two files.
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
```
|
||||
|
||||
The `filenames` argument to the `TFRecordDataset` initializer can either be a
|
||||
|
|
@ -400,7 +400,7 @@ iterator from the appropriate filenames:
|
|||
|
||||
```python
|
||||
filenames = tf.placeholder(tf.string, shape=[None])
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
dataset = dataset.map(...) # Parse the record into tensors.
|
||||
dataset = dataset.repeat() # Repeat the input indefinitely.
|
||||
dataset = dataset.batch(32)
|
||||
|
|
@ -421,7 +421,7 @@ sess.run(iterator.initializer, feed_dict={filenames: validation_filenames})
|
|||
### Consuming text data
|
||||
|
||||
Many datasets are distributed as one or more text files. The
|
||||
`tf.contrib.data.TextLineDataset` provides an easy way to extract lines from
|
||||
`tf.data.TextLineDataset` provides an easy way to extract lines from
|
||||
one or more text files. Given one or more filenames, a `TextLineDataset` will
|
||||
produce one string-valued element per line of those files. Like a
|
||||
`TFRecordDataset`, `TextLineDataset` accepts `filenames` as a `tf.Tensor`, so
|
||||
|
|
@ -429,7 +429,7 @@ you can parameterize it by passing a `tf.placeholder(tf.string)`.
|
|||
|
||||
```python
|
||||
filenames = ["/var/data/file1.txt", "/var/data/file2.txt"]
|
||||
dataset = tf.contrib.data.TextLineDataset(filenames)
|
||||
dataset = tf.data.TextLineDataset(filenames)
|
||||
```
|
||||
|
||||
By default, a `TextLineDataset` yields *every* line of each file, which may
|
||||
|
|
@ -442,7 +442,7 @@ each file.
|
|||
```python
|
||||
filenames = ["/var/data/file1.txt", "/var/data/file2.txt"]
|
||||
|
||||
dataset = tf.contrib.data.Dataset.from_tensor_slices(filenames)
|
||||
dataset = tf.data.Dataset.from_tensor_slices(filenames)
|
||||
|
||||
# Use `Dataset.flat_map()` to transform each file as a separate nested dataset,
|
||||
# and then concatenate their contents sequentially into a single "flat" dataset.
|
||||
|
|
@ -450,7 +450,7 @@ dataset = tf.contrib.data.Dataset.from_tensor_slices(filenames)
|
|||
# * Filter out lines beginning with "#" (comments).
|
||||
dataset = dataset.flat_map(
|
||||
lambda filename: (
|
||||
tf.contrib.data.TextLineDataset(filename)
|
||||
tf.data.TextLineDataset(filename)
|
||||
.skip(1)
|
||||
.filter(lambda line: tf.not_equal(tf.substr(line, 0, 1), "#"))))
|
||||
```
|
||||
|
|
@ -498,7 +498,7 @@ def _parse_function(example_proto):
|
|||
# Creates a dataset that reads all of the examples from two files, and extracts
|
||||
# the image and label features.
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
dataset = dataset.map(_parse_function)
|
||||
```
|
||||
|
||||
|
|
@ -523,7 +523,7 @@ filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])
|
|||
# `labels[i]` is the label for the image in `filenames[i].
|
||||
labels = tf.constant([0, 37, ...])
|
||||
|
||||
dataset = tf.contrib.data.Dataset.from_tensor_slices((filenames, labels))
|
||||
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
|
||||
dataset = dataset.map(_parse_function)
|
||||
```
|
||||
|
||||
|
|
@ -552,7 +552,7 @@ def _resize_function(image_decoded, label):
|
|||
filenames = ["/var/data/image1.jpg", "/var/data/image2.jpg", ...]
|
||||
labels = [0, 37, 29, 1, ...]
|
||||
|
||||
dataset = tf.contrib.data.Dataset.from_tensor_slices((filenames, labels))
|
||||
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
|
||||
dataset = dataset.map(
|
||||
lambda filename, label: tuple(tf.py_func(
|
||||
_read_py_function, [filename, label], [tf.uint8, label.dtype])))
|
||||
|
|
@ -576,9 +576,9 @@ of the elements: i.e. for each component *i*, all elements must have a tensor
|
|||
of the exact same shape.
|
||||
|
||||
```python
|
||||
inc_dataset = tf.contrib.data.Dataset.range(100)
|
||||
dec_dataset = tf.contrib.data.Dataset.range(0, -100, -1)
|
||||
dataset = tf.contrib.data.Dataset.zip((inc_dataset, dec_dataset))
|
||||
inc_dataset = tf.data.Dataset.range(100)
|
||||
dec_dataset = tf.data.Dataset.range(0, -100, -1)
|
||||
dataset = tf.data.Dataset.zip((inc_dataset, dec_dataset))
|
||||
batched_dataset = dataset.batch(4)
|
||||
|
||||
iterator = batched_dataset.make_one_shot_iterator()
|
||||
|
|
@ -599,7 +599,7 @@ different shape by specifying one or more dimensions in which they may be
|
|||
padded.
|
||||
|
||||
```python
|
||||
dataset = tf.contrib.data.Dataset.range(100)
|
||||
dataset = tf.data.Dataset.range(100)
|
||||
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x))
|
||||
dataset = dataset.padded_batch(4, padded_shapes=[None])
|
||||
|
||||
|
|
@ -637,7 +637,7 @@ its input for 10 epochs:
|
|||
|
||||
```python
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
dataset = dataset.map(...)
|
||||
dataset = dataset.repeat(10)
|
||||
dataset = dataset.batch(32)
|
||||
|
|
@ -655,7 +655,7 @@ error) for the epoch.
|
|||
|
||||
```python
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
dataset = dataset.map(...)
|
||||
dataset = dataset.batch(32)
|
||||
iterator = dataset.make_initializable_iterator()
|
||||
|
|
@ -681,7 +681,7 @@ buffer and chooses the next element uniformly at random from that buffer.
|
|||
|
||||
```python
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
dataset = dataset.map(...)
|
||||
dataset = dataset.shuffle(buffer_size=10000)
|
||||
dataset = dataset.batch(32)
|
||||
|
|
@ -698,7 +698,7 @@ with the `Dataset` API, we recommend using
|
|||
|
||||
```python
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
dataset = dataset.map(...)
|
||||
dataset = dataset.shuffle(buffer_size=10000)
|
||||
dataset = dataset.batch(32)
|
||||
|
|
@ -721,7 +721,7 @@ recommend using `Dataset.make_one_shot_iterator()`. For example:
|
|||
```python
|
||||
def dataset_input_fn():
|
||||
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
|
||||
dataset = tf.contrib.data.TFRecordDataset(filenames)
|
||||
dataset = tf.data.TFRecordDataset(filenames)
|
||||
|
||||
# Use `tf.parse_single_example()` to extract data from a `tf.Example`
|
||||
# protocol buffer, and perform any additional per-record preprocessing.
|
||||
|
|
|
|||
|
|
@ -78,9 +78,10 @@ from tensorflow.python.ops import linalg_ns as linalg
|
|||
# pylint: enable=wildcard-import
|
||||
|
||||
# Bring in subpackages.
|
||||
from tensorflow.python import data
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.estimator import estimator_lib as estimator
|
||||
from tensorflow.python.feature_column import feature_column_lib as feature_column
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.layers import layers
|
||||
from tensorflow.python.ops import bitwise_ops as bitwise
|
||||
from tensorflow.python.ops import image_ops as image
|
||||
|
|
@ -91,10 +92,11 @@ from tensorflow.python.ops import spectral_ops as spectral
|
|||
from tensorflow.python.ops.distributions import distributions
|
||||
from tensorflow.python.ops.losses import losses
|
||||
from tensorflow.python.profiler import profiler
|
||||
from tensorflow.python.user_ops import user_ops
|
||||
from tensorflow.python.util import compat
|
||||
from tensorflow.python.saved_model import saved_model
|
||||
from tensorflow.python.summary import summary
|
||||
from tensorflow.python.user_ops import user_ops
|
||||
from tensorflow.python.util import compat
|
||||
|
||||
|
||||
# Import the names from python/training.py as train.Name.
|
||||
from tensorflow.python.training import training as train
|
||||
|
|
@ -222,6 +224,7 @@ _allowed_symbols.extend([
|
|||
'app',
|
||||
'bitwise',
|
||||
'compat',
|
||||
'data',
|
||||
'distributions',
|
||||
'errors',
|
||||
'estimator',
|
||||
|
|
@ -231,12 +234,15 @@ _allowed_symbols.extend([
|
|||
'graph_util',
|
||||
'image',
|
||||
'initializers',
|
||||
'keras',
|
||||
'layers',
|
||||
'linalg',
|
||||
'logging',
|
||||
'losses',
|
||||
'metrics',
|
||||
'newaxis',
|
||||
'nn',
|
||||
'profiler',
|
||||
'python_io',
|
||||
'resource_loader',
|
||||
'saved_model',
|
||||
|
|
@ -247,9 +253,6 @@ _allowed_symbols.extend([
|
|||
'test',
|
||||
'train',
|
||||
'user_ops',
|
||||
'layers',
|
||||
'profiler',
|
||||
'keras',
|
||||
])
|
||||
|
||||
# Variables framework.versions:
|
||||
|
|
@ -263,11 +266,11 @@ _allowed_symbols.extend([
|
|||
# referenced in the whitelist.
|
||||
remove_undocumented(__name__, _allowed_symbols, [
|
||||
framework_lib, array_ops, check_ops, client_lib, compat, constant_op,
|
||||
control_flow_ops, confusion_matrix_m, distributions,
|
||||
functional_ops, histogram_ops, io_ops,
|
||||
losses, math_ops, metrics, nn, resource_loader, sets, script_ops,
|
||||
control_flow_ops, confusion_matrix_m, data, distributions,
|
||||
functional_ops, histogram_ops, io_ops, keras, layers,
|
||||
losses, math_ops, metrics, nn, profiler, resource_loader, sets, script_ops,
|
||||
session_ops, sparse_ops, state_ops, string_ops, summary, tensor_array_ops,
|
||||
train, layers, profiler, keras
|
||||
train
|
||||
])
|
||||
|
||||
# Special dunders that we choose to export:
|
||||
|
|
|
|||
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.data.Dataset.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<class \'abc.ABCMeta\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
113
tensorflow/tools/api/golden/tensorflow.data.-dataset.pbtxt
Normal file
113
tensorflow/tools/api/golden/tensorflow.data.-dataset.pbtxt
Normal file
|
|
@ -0,0 +1,113 @@
|
|||
path: "tensorflow.data.Dataset"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.data.ops.dataset_ops.Dataset\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "output_shapes"
|
||||
mtype: "<class \'abc.abstractproperty\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_types"
|
||||
mtype: "<class \'abc.abstractproperty\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'transformation_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "batch"
|
||||
argspec: "args=[\'self\', \'batch_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "cache"
|
||||
argspec: "args=[\'self\', \'filename\'], varargs=None, keywords=None, defaults=[\'\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "concatenate"
|
||||
argspec: "args=[\'self\', \'dataset\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "filter"
|
||||
argspec: "args=[\'self\', \'predicate\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "flat_map"
|
||||
argspec: "args=[\'self\', \'map_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_generator"
|
||||
argspec: "args=[\'generator\', \'output_types\', \'output_shapes\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "from_sparse_tensor_slices"
|
||||
argspec: "args=[\'sparse_tensor\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensor_slices"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensors"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "interleave"
|
||||
argspec: "args=[\'self\', \'map_func\', \'cycle_length\', \'block_length\'], varargs=None, keywords=None, defaults=[\'1\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "list_files"
|
||||
argspec: "args=[\'file_pattern\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "make_initializable_iterator"
|
||||
argspec: "args=[\'self\', \'shared_name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "make_one_shot_iterator"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "map"
|
||||
argspec: "args=[\'self\', \'map_func\', \'num_parallel_calls\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "padded_batch"
|
||||
argspec: "args=[\'self\', \'batch_size\', \'padded_shapes\', \'padding_values\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "prefetch"
|
||||
argspec: "args=[\'self\', \'buffer_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "range"
|
||||
argspec: "args=[], varargs=args, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "repeat"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "shard"
|
||||
argspec: "args=[\'self\', \'num_shards\', \'index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "shuffle"
|
||||
argspec: "args=[\'self\', \'buffer_size\', \'seed\', \'reshuffle_each_iteration\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "skip"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "take"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "zip"
|
||||
argspec: "args=[\'datasets\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.data.FixedLengthRecordDataset.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<class \'abc.ABCMeta\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
path: "tensorflow.data.FixedLengthRecordDataset"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.data.ops.readers.FixedLengthRecordDataset\'>"
|
||||
is_instance: "<class \'tensorflow.python.data.ops.dataset_ops.Dataset\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "output_shapes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_types"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filenames\', \'record_bytes\', \'header_bytes\', \'footer_bytes\', \'buffer_size\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'transformation_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "batch"
|
||||
argspec: "args=[\'self\', \'batch_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "cache"
|
||||
argspec: "args=[\'self\', \'filename\'], varargs=None, keywords=None, defaults=[\'\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "concatenate"
|
||||
argspec: "args=[\'self\', \'dataset\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "filter"
|
||||
argspec: "args=[\'self\', \'predicate\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "flat_map"
|
||||
argspec: "args=[\'self\', \'map_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_generator"
|
||||
argspec: "args=[\'generator\', \'output_types\', \'output_shapes\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "from_sparse_tensor_slices"
|
||||
argspec: "args=[\'sparse_tensor\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensor_slices"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensors"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "interleave"
|
||||
argspec: "args=[\'self\', \'map_func\', \'cycle_length\', \'block_length\'], varargs=None, keywords=None, defaults=[\'1\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "list_files"
|
||||
argspec: "args=[\'file_pattern\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "make_initializable_iterator"
|
||||
argspec: "args=[\'self\', \'shared_name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "make_one_shot_iterator"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "map"
|
||||
argspec: "args=[\'self\', \'map_func\', \'num_parallel_calls\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "padded_batch"
|
||||
argspec: "args=[\'self\', \'batch_size\', \'padded_shapes\', \'padding_values\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "prefetch"
|
||||
argspec: "args=[\'self\', \'buffer_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "range"
|
||||
argspec: "args=[], varargs=args, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "repeat"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "shard"
|
||||
argspec: "args=[\'self\', \'num_shards\', \'index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "shuffle"
|
||||
argspec: "args=[\'self\', \'buffer_size\', \'seed\', \'reshuffle_each_iteration\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "skip"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "take"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "zip"
|
||||
argspec: "args=[\'datasets\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
41
tensorflow/tools/api/golden/tensorflow.data.-iterator.pbtxt
Normal file
41
tensorflow/tools/api/golden/tensorflow.data.-iterator.pbtxt
Normal file
|
|
@ -0,0 +1,41 @@
|
|||
path: "tensorflow.data.Iterator"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.data.ops.iterator_ops.Iterator\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "initializer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shapes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_types"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'iterator_resource\', \'initializer\', \'output_types\', \'output_shapes\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_string_handle"
|
||||
argspec: "args=[\'string_handle\', \'output_types\', \'output_shapes\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "from_structure"
|
||||
argspec: "args=[\'output_types\', \'output_shapes\', \'shared_name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_next"
|
||||
argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "make_initializer"
|
||||
argspec: "args=[\'self\', \'dataset\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "string_handle"
|
||||
argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.data.TFRecordDataset.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<class \'abc.ABCMeta\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
path: "tensorflow.data.TFRecordDataset"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.data.ops.readers.TFRecordDataset\'>"
|
||||
is_instance: "<class \'tensorflow.python.data.ops.dataset_ops.Dataset\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "output_shapes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_types"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filenames\', \'compression_type\', \'buffer_size\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'transformation_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "batch"
|
||||
argspec: "args=[\'self\', \'batch_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "cache"
|
||||
argspec: "args=[\'self\', \'filename\'], varargs=None, keywords=None, defaults=[\'\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "concatenate"
|
||||
argspec: "args=[\'self\', \'dataset\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "filter"
|
||||
argspec: "args=[\'self\', \'predicate\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "flat_map"
|
||||
argspec: "args=[\'self\', \'map_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_generator"
|
||||
argspec: "args=[\'generator\', \'output_types\', \'output_shapes\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "from_sparse_tensor_slices"
|
||||
argspec: "args=[\'sparse_tensor\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensor_slices"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensors"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "interleave"
|
||||
argspec: "args=[\'self\', \'map_func\', \'cycle_length\', \'block_length\'], varargs=None, keywords=None, defaults=[\'1\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "list_files"
|
||||
argspec: "args=[\'file_pattern\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "make_initializable_iterator"
|
||||
argspec: "args=[\'self\', \'shared_name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "make_one_shot_iterator"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "map"
|
||||
argspec: "args=[\'self\', \'map_func\', \'num_parallel_calls\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "padded_batch"
|
||||
argspec: "args=[\'self\', \'batch_size\', \'padded_shapes\', \'padding_values\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "prefetch"
|
||||
argspec: "args=[\'self\', \'buffer_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "range"
|
||||
argspec: "args=[], varargs=args, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "repeat"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "shard"
|
||||
argspec: "args=[\'self\', \'num_shards\', \'index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "shuffle"
|
||||
argspec: "args=[\'self\', \'buffer_size\', \'seed\', \'reshuffle_each_iteration\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "skip"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "take"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "zip"
|
||||
argspec: "args=[\'datasets\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.data.TextLineDataset.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<class \'abc.ABCMeta\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
path: "tensorflow.data.TextLineDataset"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.data.ops.readers.TextLineDataset\'>"
|
||||
is_instance: "<class \'tensorflow.python.data.ops.dataset_ops.Dataset\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "output_shapes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_types"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filenames\', \'compression_type\', \'buffer_size\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'transformation_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "batch"
|
||||
argspec: "args=[\'self\', \'batch_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "cache"
|
||||
argspec: "args=[\'self\', \'filename\'], varargs=None, keywords=None, defaults=[\'\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "concatenate"
|
||||
argspec: "args=[\'self\', \'dataset\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "filter"
|
||||
argspec: "args=[\'self\', \'predicate\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "flat_map"
|
||||
argspec: "args=[\'self\', \'map_func\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_generator"
|
||||
argspec: "args=[\'generator\', \'output_types\', \'output_shapes\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "from_sparse_tensor_slices"
|
||||
argspec: "args=[\'sparse_tensor\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensor_slices"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_tensors"
|
||||
argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "interleave"
|
||||
argspec: "args=[\'self\', \'map_func\', \'cycle_length\', \'block_length\'], varargs=None, keywords=None, defaults=[\'1\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "list_files"
|
||||
argspec: "args=[\'file_pattern\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "make_initializable_iterator"
|
||||
argspec: "args=[\'self\', \'shared_name\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "make_one_shot_iterator"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "map"
|
||||
argspec: "args=[\'self\', \'map_func\', \'num_parallel_calls\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "padded_batch"
|
||||
argspec: "args=[\'self\', \'batch_size\', \'padded_shapes\', \'padding_values\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "prefetch"
|
||||
argspec: "args=[\'self\', \'buffer_size\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "range"
|
||||
argspec: "args=[], varargs=args, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "repeat"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "shard"
|
||||
argspec: "args=[\'self\', \'num_shards\', \'index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "shuffle"
|
||||
argspec: "args=[\'self\', \'buffer_size\', \'seed\', \'reshuffle_each_iteration\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "skip"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "take"
|
||||
argspec: "args=[\'self\', \'count\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "zip"
|
||||
argspec: "args=[\'datasets\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
23
tensorflow/tools/api/golden/tensorflow.data.pbtxt
Normal file
23
tensorflow/tools/api/golden/tensorflow.data.pbtxt
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
path: "tensorflow.data"
|
||||
tf_module {
|
||||
member {
|
||||
name: "Dataset"
|
||||
mtype: "<class \'abc.ABCMeta\'>"
|
||||
}
|
||||
member {
|
||||
name: "FixedLengthRecordDataset"
|
||||
mtype: "<class \'abc.ABCMeta\'>"
|
||||
}
|
||||
member {
|
||||
name: "Iterator"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "TFRecordDataset"
|
||||
mtype: "<class \'abc.ABCMeta\'>"
|
||||
}
|
||||
member {
|
||||
name: "TextLineDataset"
|
||||
mtype: "<class \'abc.ABCMeta\'>"
|
||||
}
|
||||
}
|
||||
|
|
@ -292,6 +292,10 @@ tf_module {
|
|||
name: "contrib"
|
||||
mtype: "<class \'tensorflow.python.util.lazy_loader.LazyLoader\'>"
|
||||
}
|
||||
member {
|
||||
name: "data"
|
||||
mtype: "<type \'module\'>"
|
||||
}
|
||||
member {
|
||||
name: "distributions"
|
||||
mtype: "<type \'module\'>"
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user