pytorch/test/dynamo/test_guard_serialization.py
zhxchen17 ffd58293f7 [dynamo] Guard serialization for FUNCTORCH_STACK_MATCH (#152616)
Make Functorch interpreters serializable most of the time, so that we can save the guards on functorch states.

## Test Cases:

0. torch.compile() without functorch layers present. Guard should fail with any layer being pushed.
1. torch.compile() nested in vmap.
2. torch.compile() nested in grad.
3. torch.compile() nested in jvp + vmap
4. torch.compile() nested functionalize
5. torch.compile() nested in vmap + grad

Differential Revision: [D74008787](https://our.internmc.facebook.com/intern/diff/D74008787/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152616
Approved by: https://github.com/zou3519
ghstack dependencies: #152615
2025-05-05 18:05:56 +00:00

454 lines
15 KiB
Python

# Owner(s): ["module: dynamo"]
import dataclasses
import importlib
import pickle
import sys
import types
import torch
import torch._dynamo.testing
import torch._inductor.config
import torch._inductor.test_case
import torch.onnx.operators
import torch.utils.cpp_extension
from torch._dynamo.bytecode_transformation import transform_code_object
from torch._dynamo.guards import CheckFunctionManager, CompileId
from torch._dynamo.symbolic_convert import (
ExceptionStack,
InstructionTranslator,
SpeculationLog,
)
from torch._dynamo.utils import dynamo_timed, get_metrics_context
from torch._guards import compile_context, CompileContext, tracing
from torch.utils import _pytree as pytree
@dataclasses.dataclass
class _FrameState:
f_locals: dict
f_globals: dict
f_code: types.CodeType
f_builtins: dict
class GlobalModule(torch.nn.Module):
def forward(self, x):
return x + 1
class TestGuardSerialization(torch._inductor.test_case.TestCase):
def _tracefunc(self, frame, event, arg):
if event != "call":
return
if self._frame_state is not None:
return
self._frame_state = _FrameState(
f_locals=dict(frame.f_locals),
f_globals=dict(frame.f_globals),
f_code=frame.f_code,
f_builtins=frame.f_builtins,
)
def _test_serialization(self, guard_type, fn, *args, **kwargs):
self._frame_state = None
sys.settrace(self._tracefunc)
if isinstance(fn, torch.nn.Module):
fn = fn.forward
try:
fn(*args, **kwargs)
finally:
sys.settrace(None)
assert self._frame_state is not None
def guard_filter_fn(guards):
ret = [
g.guard_type == guard_type or guard_type in g.derived_guard_types
for g in guards
]
self.assertTrue(any(ret))
return ret
ref_gm = None
loaded_gm = None
def transform(instructions: list, code_options: dict[str, object]):
"""
The goal is here is not to reimplement dynamo, but just to have a
simplified version to extract the state from symbolic convert.
Should not work on all cases, but should work on simple functions
in this test file.
"""
nonlocal ref_gm
nonlocal loaded_gm
tracer = InstructionTranslator(
instructions,
self._frame_state.f_code,
self._frame_state.f_locals,
self._frame_state.f_globals,
self._frame_state.f_builtins,
fn.__closure__ or (),
[], # TODO tf_mode_stack,
code_options,
torch._dynamo.lookup_backend("eager"),
one_graph=False,
export=False,
export_constraints=None,
frame_state=None,
speculation_log=SpeculationLog(),
exn_vt_stack=ExceptionStack(),
distributed_state=None,
)
with compile_context(CompileContext(CompileId(0, 0))), tracing(
tracer.output.tracing_context
), tracer.set_current_tx(), get_metrics_context(), dynamo_timed(""):
tracer.run()
check_fn_manager = CheckFunctionManager(
self._frame_state.f_code,
tracer.output,
guard_filter_fn=guard_filter_fn,
guards_serialization_mode="save",
)
ref_gm = check_fn_manager.guard_manager
guards_state = check_fn_manager.guards_state
self.assertIsNotNone(guards_state)
guards_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(
self._frame_state.f_code,
guards_state.output_graph,
guards_serialization_mode="load",
)
loaded_gm = check_fn_manager.guard_manager
try:
transform_code_object(self._frame_state.f_code, transform)
finally:
self._frame_state = None
self.assertIsNotNone(ref_gm)
self.assertIsNotNone(loaded_gm)
return ref_gm, loaded_gm
def _test_check_fn(self, ref, loaded, inputs, expected):
self.assertIsInstance(inputs, dict)
self.assertEqual(ref.check(inputs), expected)
self.assertEqual(ref.check(inputs), loaded.check(inputs))
def test_tensor_match(self):
def f(x: torch.Tensor):
return x + 1
ref, loaded = self._test_serialization(
"TENSOR_MATCH", f, torch.ones(2, dtype=torch.float32)
)
self._test_check_fn(
ref, loaded, {"x": torch.randn(2, dtype=torch.float32)}, True
)
self._test_check_fn(
ref, loaded, {"x": torch.randn(3, dtype=torch.float32)}, False
)
self._test_check_fn(
ref, loaded, {"x": torch.randn(2, dtype=torch.float64)}, False
)
self._test_check_fn(ref, loaded, {"x": None}, False)
def test_not_present_in_generic_dict(self):
class Module(torch.nn.Module):
def forward(self, x: torch.Tensor):
return x + 1
m = Module()
def fn(x):
return m(x)
ref, loaded = self._test_serialization(
"NOT_PRESENT_IN_GENERIC_DICT", fn, torch.ones(2, dtype=torch.float32)
)
self._test_check_fn(ref, loaded, {"m": m}, True)
m.forward = types.MethodType(lambda x: x + 2, m)
self._test_check_fn(ref, loaded, {"m": m}, False)
def test_hasattr_serialization(self):
class Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = 1
def forward(self, x: torch.Tensor):
if hasattr(self, "a"):
return x + self.a
else:
return x + 2
m = Module()
def fn(x):
return m(x)
ref, loaded = self._test_serialization("HASATTR", fn, torch.randn(3))
self._test_check_fn(ref, loaded, {"m": m}, True)
delattr(m, "a")
self._test_check_fn(ref, loaded, {"m": m}, False)
def test_type_match(self):
class LocalModule(torch.nn.Module):
def forward(self, x: torch.Tensor):
return x + 1
m = LocalModule()
def fn(m, x):
return m(x)
with self.assertRaisesRegex(
TypeError, "Please define the class at global scope"
):
self._test_serialization("TYPE_MATCH", fn, m, torch.randn(3))
m = GlobalModule()
ref, loaded = self._test_serialization("TYPE_MATCH", fn, m, torch.randn(3))
self._test_check_fn(ref, loaded, {"m": m}, True)
self._test_check_fn(ref, loaded, {"m": GlobalModule()}, True)
self._test_check_fn(ref, loaded, {"m": torch.nn.Module()}, False)
def test_dict_version(self):
def fn(x):
return pytree.tree_leaves(x)[0] + 1
with self.assertRaisesRegex(
RuntimeError, "DICT_VERSION guard cannot be serialized."
):
self._test_serialization("DICT_VERSION", fn, {"t": torch.randn(3)})
def test_dict_contains(self):
def fn(x):
if x.__contains__("t"):
return x["t"] + 1
else:
return torch.ones(3)
ref, loaded = self._test_serialization(
"DICT_CONTAINS", fn, {"t": torch.randn(3)}
)
self._test_check_fn(ref, loaded, {"x": {"t": torch.randn(3)}}, True)
self._test_check_fn(ref, loaded, {"x": {}}, False)
self._test_check_fn(
ref, loaded, {"x": {"t": torch.randn(3), "d": torch.randn(3)}}, True
)
def test_bool_match(self):
def fn(x, b):
if b:
return x + 1
else:
return x + 2
ref, loaded = self._test_serialization("BOOL_MATCH", fn, torch.randn(3), True)
self._test_check_fn(ref, loaded, {"x": torch.randn(3), "b": True}, True)
self._test_check_fn(ref, loaded, {"x": torch.randn(3), "b": False}, False)
self._test_check_fn(ref, loaded, {"x": torch.randn(3), "b": None}, False)
def test_none_match(self):
def fn(x, b):
if b is None:
return x + 1
else:
return x + 2
ref, loaded = self._test_serialization("NONE_MATCH", fn, torch.randn(3), None)
self._test_check_fn(ref, loaded, {"x": torch.randn(3), "b": None}, True)
self._test_check_fn(ref, loaded, {"x": torch.randn(3), "b": False}, False)
self._test_check_fn(ref, loaded, {"x": torch.randn(3), "b": True}, False)
def test_id_match(self):
def fn(x):
return x + id(x)
with self.assertRaisesRegex(
RuntimeError, "ID_MATCH guard cannot be serialized."
):
self._test_serialization("ID_MATCH", fn, torch.randn(3))
def test_dispatch_key_set_match(self):
def fn(x, dks):
if dks.has("CPU"):
return torch.sin(x + 1)
else:
return torch.sin(x - 1)
x = torch.randn(3)
dks = torch._C._dispatch_keys(x)
ref, loaded = self._test_serialization("DISPATCH_KEY_SET_MATCH", fn, x, dks)
self._test_check_fn(ref, loaded, {"x": x, "dks": dks}, True)
x = torch.randn(3, device="meta")
dks = torch._C._dispatch_keys(x)
self._test_check_fn(ref, loaded, {"x": x, "dks": dks}, False)
def test_name_match(self):
def fn(x, y):
return torch.cond(x, lambda x: y + 1, lambda x: y - 1, (y,))
x = torch.tensor(True)
y = torch.randn(3)
ref, loaded = self._test_serialization("NAME_MATCH", fn, x, y)
self._test_check_fn(ref, loaded, {"x": x, "y": y}, True)
op = importlib.import_module("torch._higher_order_ops.cond").cond_op
prev, op.__name__ = op.__name__, ""
try:
self._test_check_fn(ref, loaded, {"x": x, "y": y}, False)
finally:
op.__name__ = prev
def test_dual_level(self):
def fn(x):
with torch.autograd.forward_ad.dual_level():
return x + 1
x = torch.randn(3)
ref, loaded = self._test_serialization("DUAL_LEVEL", fn, x)
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch.autograd.forward_ad.dual_level():
self._test_check_fn(ref, loaded, {"x": x}, False)
def test_functorch_stack_match(self):
# Test when functorch stack is empty.
def fn(x):
return torch.func.jvp(torch.sin, (x,), (x,))
x = torch.randn(3, 4)
ref, loaded = self._test_serialization("FUNCTORCH_STACK_MATCH", fn, x)
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch._functorch.vmap.vmap_increment_nesting(2, "error"):
self._test_check_fn(ref, loaded, {"x": x}, False)
def fn(x):
def g(x):
return torch.vmap(torch.func.grad(torch.sin))(x)
return torch.vmap(g)(x)
x = torch.randn(4, 5)
ref, loaded = self._test_serialization("FUNCTORCH_STACK_MATCH", fn, x)
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch._functorch.eager_transforms.grad_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, False)
# Test when there are more than 0 functorch layers.
# Simulate the case where torch.compile is nested inside eager transforms.
# Case 1: vmap
def fn(x):
return x.sum()
ref = loaded = None
def run(x):
nonlocal ref, loaded
# Turn off automatic dynamic shape to so that functionalization
# doesn't produce extra SymInt to serialize.
with torch._dynamo.config.patch(automatic_dynamic_shapes=False):
ref, loaded = self._test_serialization("FUNCTORCH_STACK_MATCH", fn, x)
return fn(x)
torch.vmap(run)(x)
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.eager_transforms.grad_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, False)
# Case 2: grad
x = torch.randn(3, 2)
ref = loaded = None
torch.func.grad(run)(x)
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.eager_transforms.grad_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch._functorch.eager_transforms.grad_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
self._test_check_fn(ref, loaded, {"x": x}, False)
# Case 3: jvp + vmap
x = torch.randn(3, 4)
ref = loaded = None
def fn(x):
return torch.func.jvp(torch.sin, (x,), (x,))
torch.func.jvp(torch.vmap(run), (x,), (x,))
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.eager_transforms.jvp_increment_nesting():
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
with torch._functorch.eager_transforms.jvp_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, False)
# Case 4: functionalize
x = torch.randn(3, 2)
ref = loaded = None
torch.func.functionalize(run)(x)
self._test_check_fn(ref, loaded, {"x": x}, False)
torch._C._functorch._func_increment_nesting(True)
try:
self._test_check_fn(ref, loaded, {"x": x}, True)
finally:
torch._C._functorch._func_decrement_nesting()
with torch._functorch.eager_transforms.jvp_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, False)
# Case 5: vmap + grad
def fn(x):
return x.sum()
x = torch.randn(3, 2)
ref = loaded = None
torch.vmap(torch.func.grad(run))(x)
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
with torch._functorch.eager_transforms.grad_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, True)
with torch._functorch.eager_transforms.grad_increment_nesting():
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.vmap.vmap_increment_nesting(1, "error"):
self._test_check_fn(ref, loaded, {"x": x}, False)
with torch._functorch.eager_transforms.grad_increment_nesting():
self._test_check_fn(ref, loaded, {"x": x}, False)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()