pytorch/torch/nn/modules/module.py
Sam Gross ffcc38cf05 Deterministic ordering of parameters and buffers. (#317)
Uses the assignment syntax to get deterministic ordering of parameters.
The ordering of parameters using the constructor syntax is
non-deterministic because kwargs use dict() in Python 3.5 and earlier.
2016-12-16 14:45:56 -05:00

307 lines
10 KiB
Python

from itertools import chain
from collections import OrderedDict
import torch
from ..backends.thnn import backend as thnn_backend
from ..parameter import Parameter
from torch.autograd import Variable
class Module(object):
"""This is the base class for all Modules defined in the nn package.
Even the Container class derives from this class.
An nn.Module has the following interface:
**Constructor:**
nn.Module()
**forward(...)**
This is the function that one defines when subclassing to create
their own modules.
It takes in inputs and returns outputs.
**__call__(...)**
This calls the forward function, as well as the hooks
**register_parameter(name, param)**
Adds a parameter to the module. The parameter can be accessed as an
attribute of the module by its name.
**register_buffer(name, tensor)**
This is typically used to register a buffer that is not a Parameter.
For example, in BatchNorm, the running_mean is a buffer, so one would
register it in the constructor of BatchNorm with:
`self.register_buffer('running_mean', torch.zeros(num_features))`
The registered buffers can simply be accessed as class members
when needed.
**cpu()**
Recursively moves all it's parameters and buffers to the CPU
**cuda(device_id=None)**
Recursively moves all it's parameters and buffers to the CUDA memory.
If device_id is given, moves it to GPU number device_id
**float()**
Typecasts the parameters and buffers to float
**double()**
Typecasts the parameters and buffers to double
**register_forward_hook(name, hook)**
This will register a user-defined closure on the module.
Whenever the module finishes it's forward operation,
the user closure is called.
The signature of the closure is `def closure(input, output)`
**register_backward_hook(name, hook)**
This will register a user-defined closure on the module.
Whenever the module finishes it's backward operation,
the user closure is called.
The signature of the closure is `def closure(gradOutput, gradInput)`
**remove_forward_hook(name)**
Removes a registered forward hook with the given name
**remove_backward_hook(name)**
Removes a registered backward hook with the given name
**`[generator] parameters()`**
returns a generator over all learnable parameters in the container instance.
This can typically be passed to the optimizer API
```python
# .parameters()
>>> for param in model.parameters():
>>> print(type(param.data), param.size())
<class 'torch.FloatTensor'> (20L,)
<class 'torch.FloatTensor'> (20L, 1L, 5L, 5L)
```
**`[dict] state_dict()`**
returns a dictionary of learnable parameters of the Module.
For example: ['weight' : Parameter(torch.FloatTensor(20x1x5x5)),
'bias' : Parameter(torch.FloatTensor(20)),
]
```python
# .state_dict()
>>> pdict = model.state_dict()
>>> print(pdict.keys())
['bias', 'weight']
```
**`load_state_dict(dict)`**
Given a parameter dict, sets the parameters of self to be the given dict.
**`train()`**
Sets the Container to training mode (for modules such as batchnorm, dropout etc.)
**`eval()`**
Sets the Container to evaluate mode (for modules such as batchnorm, dropout etc.)
**`zero_grad()`**
Zeroes the gradients of each Parameter of the module
"""
def __init__(self):
self._backend = thnn_backend
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._backward_hooks = OrderedDict()
self._forward_hooks = OrderedDict()
self.training = True
for name, param in self._parameters.items():
if not isinstance(param, Parameter):
if isinstance(param, Variable):
raise TypeError("can't use a Variable as a module "
"parameter. Convert it to torch.nn.Parameter first.")
if param is not None:
param = Parameter(param)
self._parameters[name] = param
def forward(self, *input):
raise NotImplementedError
def register_buffer(self, name, tensor):
self._buffers[name] = tensor
def register_parameter(self, name, param):
if '_parameters' not in self.__dict__:
raise AttributeError(
"cannot assign parameter before Module.__init__() call")
if param is None:
self._parameters[name] = None
elif not isinstance(param, Parameter):
raise TypeError("cannot assign '{}' object to parameter '{}' "
"(torch.nn.Parameter or None required)"
.format(torch.typename(param), name))
elif param.creator:
raise ValueError(
"Cannot assign non-leaf Variable to parameter '{0}'. Model "
"parameters must be created explicitly. To express '{0}' "
"as a function of another variable, compute the value in "
"the forward() method.".format(name))
else:
self._parameters[name] = param
def _apply(self, fn):
for param in self._parameters.values():
if param is not None:
# Variables stored in modules are graph leaves, and we don't
# want to create copy nodes, so we have to unpack the data.
param.data = fn(param.data)
if param.grad is not None:
param._grad = fn(param._grad)
for key, buf in self._buffers.items():
if buf is not None:
self._buffers[key] = fn(buf)
return self
def apply(self, fn):
fn(self)
return self
def cuda(self, device_id=None):
return self._apply(lambda t: t.cuda(device_id))
def cpu(self, device_id=None):
return self._apply(lambda t: t.cpu())
def type(self, dst_type):
return self._apply(lambda t: t.type(dst_type))
def float(self):
return self._apply(lambda t: t.float())
def double(self):
return self._apply(lambda t: t.double())
def register_backward_hook(self, name, hook):
assert name not in self._backward_hooks, \
"Trying to register a second backward hook with name {}".format(name)
self._backward_hooks[name] = lambda gi, go: hook(self, gi, go)
def remove_backward_hook(self, name):
assert name in self._backward_hooks, \
"Trying to remove an inexistent backward hook with name {}".format(name)
del self._backward_hooks[name]
def register_forward_hook(self, name, hook):
assert name not in self._forward_hooks, \
"Trying to register a second forward hook with name {}".format(name)
self._forward_hooks[name] = hook
def remove_forward_hook(self, name):
assert name in self._forward_hooks, \
"Trying to remove an inexistent forward hook with name {}".format(name)
del self._forward_hooks[name]
def __call__(self, *input, **kwargs):
result = self.forward(*input, **kwargs)
for name, hook in self._forward_hooks.items():
hook_result = hook(self, input, result)
if hook_result is not None:
raise RuntimeError("forward hooks should never return any "
"values, but '{}' didn't return None".format(name))
var = result
while not isinstance(var, Variable):
var = var[0]
creator = var.creator
if creator is not None:
creator._backward_hooks = self._backward_hooks
return result
def __getattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return _parameters[name]
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return _buffers[name]
return object.__getattribute__(self, name)
def __setattr__(self, name, value):
params = self.__dict__.get('_parameters')
if isinstance(value, Parameter) or (params and name in params):
self.register_parameter(name, value)
else:
object.__setattr__(self, name, value)
def __delattr__(self, name):
if name in self._parameters:
del self._parameters[name]
else:
object.__delattr__(self, name)
def state_dict(self, destination=None, prefix=''):
if destination is None:
destination = OrderedDict()
for name, param in chain(self._buffers.items(), self._parameters.items()):
if param is not None:
destination[prefix + name] = param
return destination
def load_state_dict(self, state_dict, prefix=''):
for name, param in self._parameters.items():
new_param = state_dict.get(prefix + name, param)
if not isinstance(new_param, Parameter) and new_param is not None:
raise TypeError(
"expected torch.autograd.Parameter for key '{}' (got {})"
.format(prefix + name, torch.typename(new_param)))
self._parameters[name] = new_param
for name, buf in self._buffers.items():
self._buffers[name] = state_dict.get(prefix + name, buf)
def parameters(self, memo=None):
if memo is None:
memo = set()
for p in self._parameters.values():
if p is not None and p not in memo:
memo.add(p)
yield p
def children(self):
if False:
yield
def modules(self, memo=None):
if memo is None:
memo = set()
if self not in memo:
memo.add(self)
yield self
def train(self):
self.training = True
return self
def eval(self):
self.training = False
return self
def zero_grad(self):
for p in self.parameters():
p.grad.zero_()