pytorch/docs/source/torch.nn.quantized.rst
mattip b7bda236d1 DOC: split quantization.rst into smaller pieces (#41321)
Summary:
xref gh-38010 and gh-38011.

After this PR, there should be only two warnings:
```
pytorch/docs/source/index.rst:65: WARNING: toctree contains reference to nonexisting \
      document 'torchvision/index'
WARNING: autodoc: failed to import class 'tensorboard.writer.SummaryWriter' from module \
     'torch.utils'; the following exception was raised:
No module named 'tensorboard'
```

If tensorboard and torchvision are prerequisites to building docs, they should be added to the `requirements.txt`.

As for breaking up quantization into smaller pieces: I split out the list of supported operations and the list of modules to separate documents. I think this makes the page flow better, makes it much "lighter" in terms of page cost, and also removes some warnings since the same class names appear in multiple sub-modules.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41321

Reviewed By: ngimel

Differential Revision: D22753099

Pulled By: mruberry

fbshipit-source-id: d504787fcf1104a0b6e3d1c12747ec53450841da
2020-07-25 23:59:40 -07:00

124 lines
1.9 KiB
ReStructuredText

torch.nn.quantized
------------------
This module implements the quantized versions of the nn layers such as
~`torch.nn.Conv2d` and `torch.nn.ReLU`.
Functional interface
~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.nn.quantized.functional
.. autofunction:: relu
.. autofunction:: linear
.. autofunction:: conv1d
.. autofunction:: conv2d
.. autofunction:: conv3d
.. autofunction:: max_pool2d
.. autofunction:: adaptive_avg_pool2d
.. autofunction:: avg_pool2d
.. autofunction:: interpolate
.. autofunction:: hardswish
.. autofunction:: upsample
.. autofunction:: upsample_bilinear
.. autofunction:: upsample_nearest
.. automodule:: torch.nn.quantized
ReLU
~~~~~~~~~~~~~~~
.. autoclass:: ReLU
:members:
ReLU6
~~~~~~~~~~~~~~~
.. autoclass:: ReLU6
:members:
ELU
~~~~~~~~~~~~~~~
.. autoclass:: ELU
:members:
Hardswish
~~~~~~~~~~~~~~~
.. autoclass:: Hardswish
:members:
Conv1d
~~~~~~~~~~~~~~~
.. autoclass:: Conv1d
:members:
Conv2d
~~~~~~~~~~~~~~~
.. autoclass:: Conv2d
:members:
Conv3d
~~~~~~~~~~~~~~~
.. autoclass:: Conv3d
:members:
FloatFunctional
~~~~~~~~~~~~~~~
.. autoclass:: FloatFunctional
:members:
QFunctional
~~~~~~~~~~~~~~~
.. autoclass:: QFunctional
:members:
Quantize
~~~~~~~~~~~~~~~
.. autoclass:: Quantize
:members:
DeQuantize
~~~~~~~~~~~~~~~
.. autoclass:: DeQuantize
:members:
Linear
~~~~~~~~~~~~~~~
.. autoclass:: Linear
:members:
BatchNorm2d
~~~~~~~~~~~~~~~
.. autoclass:: BatchNorm2d
:members:
BatchNorm3d
~~~~~~~~~~~~~~~
.. autoclass:: BatchNorm3d
:members:
LayerNorm
~~~~~~~~~~~~~~~
.. autoclass:: LayerNorm
:members:
GroupNorm
~~~~~~~~~~~~~~~
.. autoclass:: GroupNorm
:members:
InstanceNorm1d
~~~~~~~~~~~~~~~
.. autoclass:: InstanceNorm1d
:members:
InstanceNorm2d
~~~~~~~~~~~~~~~
.. autoclass:: InstanceNorm2d
:members:
InstanceNorm3d
~~~~~~~~~~~~~~~
.. autoclass:: InstanceNorm3d
:members: