pytorch/torch/ao/quantization/quantize_pt2e.py
Kimish Patel ffc0c46092 [Quantization] Add metadata porting for nodes added by quantization (#107107)
Summary:
This diff adds adding metadata to q-dq nodes by inferring the
quatization intent from node annotations. Annotations on the node are
way for user to specify how a node or subgraph is supposed to be
quantized. We continue to use that information to copy metadata on Q/DQ
node from appropriate nodes.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D48488416](https://our.internmc.facebook.com/intern/diff/D48488416)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107107
Approved by: https://github.com/jerryzh168
ghstack dependencies: #107105, #107106, #107899, #107900
2023-09-02 06:38:14 +00:00

110 lines
3.3 KiB
Python

from torch.fx import GraphModule
from .pt2e.prepare import prepare
from .pt2e.qat_utils import (
_fuse_conv_bn_qat,
_fold_conv_bn_qat,
)
from .pt2e.utils import (
_get_node_name_to_scope,
_fuse_conv_bn_,
)
from .pt2e.representation import reference_representation_rewrite
from .fx.prepare import prepare as fx_prepare
from .quantize_fx import _convert_to_reference_decomposed_fx
from torch.ao.quantization import QConfigMapping
from torch.ao.quantization.quantizer import ( # noqa: F401
Quantizer,
QuantizationSpecBase,
QuantizationSpec,
FixedQParamsQuantizationSpec,
SharedQuantizationSpec,
DerivedQuantizationSpec,
QuantizationAnnotation,
)
from torch.ao.quantization.backend_config import BackendConfig
from typing import Any, Tuple
from torch.fx.passes.infra.pass_manager import PassManager
from torch.ao.quantization.pt2e.duplicate_dq_pass import DuplicateDQPass
from torch.ao.quantization.pt2e.port_metadata_pass import PortNodeMetaForQDQ
__all__ = [
"prepare_pt2e",
"prepare_qat_pt2e",
"convert_pt2e",
]
def _prepare_pt2e_deprecated(
model: GraphModule,
qconfig_mapping: QConfigMapping,
example_inputs: Tuple[Any, ...],
backend_config: BackendConfig,
) -> GraphModule:
node_name_to_scope = _get_node_name_to_scope(model)
# TODO: check qconfig_mapping to make sure conv and bn are both configured
# to be quantized before fusion
# TODO: (maybe) rewrite this with subgraph_rewriter
_fuse_conv_bn_(model)
model = fx_prepare(
model,
qconfig_mapping,
False, # is_qat
node_name_to_scope,
example_inputs,
backend_config=backend_config
)
return model
def prepare_pt2e(
model: GraphModule,
quantizer: Quantizer,
) -> GraphModule:
original_graph_meta = model.meta
node_name_to_scope = _get_node_name_to_scope(model)
# TODO: check qconfig_mapping to make sure conv and bn are both configured
# to be quantized before fusion
# TODO: (maybe) rewrite this with subgraph_rewriter
_fuse_conv_bn_(model)
quantizer.annotate(model)
quantizer.validate(model)
model = prepare(model, node_name_to_scope, is_qat=False)
model.meta.update(original_graph_meta)
return model
def prepare_qat_pt2e(
model: GraphModule,
quantizer: Quantizer,
) -> GraphModule:
original_graph_meta = model.meta
node_name_to_scope = _get_node_name_to_scope(model)
quantizer.annotate(model)
quantizer.validate(model)
# Perform fusion after annotate to avoid quantizing ops in the new
# subgraph that don't need to be quantized
# TODO: only fuse if conv and bn are both configured to be quantized
_fuse_conv_bn_qat(model)
model = prepare(model, node_name_to_scope, is_qat=True)
model.meta.update(original_graph_meta)
return model
def convert_pt2e(
model: GraphModule,
use_reference_representation: bool = False,
) -> GraphModule:
original_graph_meta = model.meta
model = _convert_to_reference_decomposed_fx(model)
model = _fold_conv_bn_qat(model)
pm = PassManager([DuplicateDQPass()])
model = pm(model).graph_module
pm = PassManager([PortNodeMetaForQDQ()])
model = pm(model).graph_module
if use_reference_representation:
model = reference_representation_rewrite(model)
model.meta.update(original_graph_meta)
return model