mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This diff adds adding metadata to q-dq nodes by inferring the quatization intent from node annotations. Annotations on the node are way for user to specify how a node or subgraph is supposed to be quantized. We continue to use that information to copy metadata on Q/DQ node from appropriate nodes. Test Plan: Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D48488416](https://our.internmc.facebook.com/intern/diff/D48488416) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107107 Approved by: https://github.com/jerryzh168 ghstack dependencies: #107105, #107106, #107899, #107900
368 lines
15 KiB
Python
368 lines
15 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
import copy
|
|
|
|
import unittest
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch._export as export
|
|
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
|
|
from torch.ao.quantization.quantizer import Quantizer
|
|
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
|
|
get_symmetric_quantization_config,
|
|
)
|
|
from torch.ao.quantization.quantizer.xnnpack_quantizer_utils import OP_TO_ANNOTATOR
|
|
|
|
from torch.fx import Node
|
|
|
|
from torch.testing._internal.common_quantization import QuantizationTestCase
|
|
|
|
|
|
class TestHelperModules:
|
|
class Conv2dWithObsSharingOps(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 3, 3)
|
|
self.hardtanh = torch.nn.Hardtanh()
|
|
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
|
|
self.linear = torch.nn.Linear(3, 3)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.adaptive_avg_pool2d(x)
|
|
x = self.hardtanh(x)
|
|
x = x.view(-1, 3)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
def _tag_partitions(
|
|
backend_name: str, op_name: str, annotated_partitions: List[List[Node]]
|
|
):
|
|
for index, partition_nodes in enumerate(annotated_partitions):
|
|
tag_name = backend_name + "_" + op_name + "_" + str(index)
|
|
for node in partition_nodes:
|
|
assert "quantization_tag" not in node.meta, f"{node} is already tagged"
|
|
node.meta["quantization_tag"] = tag_name
|
|
|
|
|
|
_QUANT_OPS = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.quantize_per_channel.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
|
torch.ops.quantized_decomposed.choose_qparams.tensor,
|
|
}
|
|
|
|
|
|
class TestMetaDataPorting(QuantizationTestCase):
|
|
def _test_metadata_porting(
|
|
self,
|
|
model,
|
|
example_inputs,
|
|
quantizer,
|
|
node_tags=None,
|
|
):
|
|
m_eager = model.eval()
|
|
|
|
# program capture
|
|
m = copy.deepcopy(m_eager)
|
|
m = export.capture_pre_autograd_graph(
|
|
m,
|
|
example_inputs,
|
|
)
|
|
|
|
m = prepare_pt2e(m, quantizer)
|
|
# Calibrate
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
|
|
pt2_quant_output = m(*example_inputs)
|
|
recorded_node_tags = {}
|
|
for n in m.graph.nodes:
|
|
if (
|
|
n.op == "call_function"
|
|
and n.target in _QUANT_OPS
|
|
and "quantization_tag" in n.meta
|
|
):
|
|
if n.target not in recorded_node_tags:
|
|
recorded_node_tags[n.target] = set()
|
|
if n.meta["quantization_tag"] in recorded_node_tags[n.target]:
|
|
raise ValueError(
|
|
f"{n} has tag {n.meta['quantization_tag']} that is associated with another node of the same type"
|
|
)
|
|
recorded_node_tags[n.target].add(n.meta["quantization_tag"])
|
|
self.assertEqual(set(recorded_node_tags.keys()), set(node_tags.keys()))
|
|
for k, v in recorded_node_tags.items():
|
|
self.assertEqual(v, node_tags[k])
|
|
|
|
def test_simple_metadata_porting(self):
|
|
"""
|
|
Model under test
|
|
conv2d -> avgpool -> hardtanh -> linear
|
|
Check quantization tags on conv2d, avgpool and linear are correctly set
|
|
"""
|
|
|
|
class BackendAQuantizer(Quantizer):
|
|
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
backend_string = "BackendA"
|
|
quantization_config = get_symmetric_quantization_config(
|
|
is_per_channel=True
|
|
)
|
|
annotated_partitions = OP_TO_ANNOTATOR["linear"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(backend_string, "linear", annotated_partitions)
|
|
annotated_partitions = OP_TO_ANNOTATOR["conv2d"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(backend_string, "conv2d", annotated_partitions)
|
|
annotated_partitions = OP_TO_ANNOTATOR["adaptive_avg_pool2d"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(
|
|
backend_string, "adaptive_avg_pool2d", annotated_partitions
|
|
)
|
|
|
|
def validate(self, model: torch.fx.GraphModule) -> None:
|
|
pass
|
|
|
|
example_inputs = (torch.randn(1, 3, 5, 5),)
|
|
quantize_per_tensor_tags = {
|
|
"BackendA_conv2d_0",
|
|
"BackendA_adaptive_avg_pool2d_0",
|
|
"BackendA_linear_0",
|
|
}
|
|
dequantize_per_tensor_tags = {
|
|
"BackendA_adaptive_avg_pool2d_0",
|
|
"BackendA_conv2d_0",
|
|
"BackendA_linear_0",
|
|
}
|
|
dequantize_per_channel_tags = {"BackendA_conv2d_0", "BackendA_linear_0"}
|
|
node_tags = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default: quantize_per_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default: dequantize_per_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default: dequantize_per_channel_tags,
|
|
}
|
|
self._test_metadata_porting(
|
|
TestHelperModules.Conv2dWithObsSharingOps(),
|
|
example_inputs,
|
|
BackendAQuantizer(),
|
|
node_tags,
|
|
)
|
|
|
|
def test_metadata_porting_with_no_quant_inbetween(self):
|
|
"""
|
|
Model under test
|
|
conv2d -> avgpool -> hardtanh -> linear
|
|
Dont quantize avgpool
|
|
Check quantization tags on conv2d and linear are correctly set
|
|
"""
|
|
|
|
class BackendAQuantizer(Quantizer):
|
|
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
backend_string = "BackendA"
|
|
quantization_config = get_symmetric_quantization_config(
|
|
is_per_channel=True
|
|
)
|
|
annotated_partitions = OP_TO_ANNOTATOR["linear"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(backend_string, "linear", annotated_partitions)
|
|
annotated_partitions = OP_TO_ANNOTATOR["conv2d"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(backend_string, "conv2d", annotated_partitions)
|
|
|
|
def validate(self, model: torch.fx.GraphModule) -> None:
|
|
pass
|
|
|
|
example_inputs = (torch.randn(1, 3, 5, 5),)
|
|
quantize_per_tensor_tags = {"BackendA_conv2d_0", "BackendA_linear_0"}
|
|
dequantize_per_tensor_tags = {"BackendA_conv2d_0", "BackendA_linear_0"}
|
|
dequantize_per_channel_tags = {"BackendA_conv2d_0", "BackendA_linear_0"}
|
|
node_tags = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default: quantize_per_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default: dequantize_per_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default: dequantize_per_channel_tags,
|
|
}
|
|
self._test_metadata_porting(
|
|
TestHelperModules.Conv2dWithObsSharingOps(),
|
|
example_inputs,
|
|
BackendAQuantizer(),
|
|
node_tags,
|
|
)
|
|
|
|
@unittest.skip("Temporarily disabled")
|
|
def test_metadata_porting_for_dq(self):
|
|
"""
|
|
Model under test
|
|
conv2d -> avgpool -> hardtanh -> linear
|
|
Quantize all except linear.
|
|
Quantize linear with dynamic quantization
|
|
Check quantization tags on conv2d, avgpool and linear are correctly set
|
|
"""
|
|
|
|
class BackendAQuantizer(Quantizer):
|
|
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
backend_string = "BackendA"
|
|
# static quantiazation
|
|
quantization_config = get_symmetric_quantization_config(
|
|
is_per_channel=True
|
|
)
|
|
annotated_partitions = OP_TO_ANNOTATOR["conv2d"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(backend_string, "conv2d", annotated_partitions)
|
|
annotated_partitions = OP_TO_ANNOTATOR["adaptive_avg_pool2d"](
|
|
gm, quantization_config
|
|
)
|
|
_tag_partitions(
|
|
backend_string, "adaptive_avg_pool2d", annotated_partitions
|
|
)
|
|
|
|
# dynamic quantization
|
|
quantization_config_dynamic = get_symmetric_quantization_config(
|
|
is_per_channel=True, is_dynamic=True
|
|
)
|
|
annotated_partitions = OP_TO_ANNOTATOR["linear"](
|
|
gm, quantization_config_dynamic
|
|
)
|
|
_tag_partitions(backend_string, "linear_dynamic", annotated_partitions)
|
|
|
|
def validate(self, model: torch.fx.GraphModule) -> None:
|
|
pass
|
|
|
|
example_inputs = (torch.randn(1, 3, 5, 5),)
|
|
quantize_per_tensor_tags = {
|
|
"BackendA_conv2d_0",
|
|
"BackendA_adaptive_avg_pool2d_0",
|
|
}
|
|
quantize_per_tensor_tensor_tags = {"BackendA_linear_dynamic_0"}
|
|
choose_qparams_tensor_tensor_tags = {"BackendA_linear_dynamic_0"}
|
|
dequantize_per_tensor_tags = {
|
|
"BackendA_adaptive_avg_pool2d_0",
|
|
"BackendA_conv2d_0",
|
|
}
|
|
dequantize_per_tensor_tensor_tags = {"BackendA_linear_dynamic_0"}
|
|
dequantize_per_channel_tags = {
|
|
"BackendA_conv2d_0",
|
|
"BackendA_linear_dynamic_0",
|
|
}
|
|
node_tags = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default: quantize_per_tensor_tags,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor: quantize_per_tensor_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default: dequantize_per_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: dequantize_per_tensor_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default: dequantize_per_channel_tags,
|
|
torch.ops.quantized_decomposed.choose_qparams.tensor: choose_qparams_tensor_tensor_tags,
|
|
}
|
|
self._test_metadata_porting(
|
|
TestHelperModules.Conv2dWithObsSharingOps(),
|
|
example_inputs,
|
|
BackendAQuantizer(),
|
|
node_tags,
|
|
)
|
|
|
|
def test_metadata_porting_for_two_dq(self):
|
|
"""
|
|
Model under test
|
|
conv2d -> avgpool -> hardtanh -> linear
|
|
Quantize linear and conv with dynamic quantization
|
|
Check quantization tags on conv2d, avgpool and linear are correctly set
|
|
"""
|
|
|
|
class BackendAQuantizer(Quantizer):
|
|
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
backend_string = "BackendA"
|
|
|
|
# dynamic quantization
|
|
quantization_config_dynamic = get_symmetric_quantization_config(
|
|
is_per_channel=True, is_dynamic=True
|
|
)
|
|
annotated_partitions = OP_TO_ANNOTATOR["conv2d"](
|
|
gm, quantization_config_dynamic
|
|
)
|
|
_tag_partitions(backend_string, "conv2d_dynamic", annotated_partitions)
|
|
annotated_partitions = OP_TO_ANNOTATOR["linear"](
|
|
gm, quantization_config_dynamic
|
|
)
|
|
_tag_partitions(backend_string, "linear_dynamic", annotated_partitions)
|
|
|
|
def validate(self, model: torch.fx.GraphModule) -> None:
|
|
pass
|
|
|
|
example_inputs = (torch.randn(1, 3, 5, 5),)
|
|
choose_qparams_tensor_tags = {
|
|
"BackendA_conv2d_dynamic_0",
|
|
"BackendA_linear_dynamic_0",
|
|
}
|
|
quantize_per_tensor_tensor_tags = {
|
|
"BackendA_conv2d_dynamic_0",
|
|
"BackendA_linear_dynamic_0",
|
|
}
|
|
dequantize_per_tensor_tensor_tags = {
|
|
"BackendA_conv2d_dynamic_0",
|
|
"BackendA_linear_dynamic_0",
|
|
}
|
|
dequantize_per_channel_tags = {
|
|
"BackendA_conv2d_dynamic_0",
|
|
"BackendA_linear_dynamic_0",
|
|
}
|
|
node_tags = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor: quantize_per_tensor_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: dequantize_per_tensor_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default: dequantize_per_channel_tags,
|
|
torch.ops.quantized_decomposed.choose_qparams.tensor: choose_qparams_tensor_tags,
|
|
}
|
|
self._test_metadata_porting(
|
|
TestHelperModules.Conv2dWithObsSharingOps(),
|
|
example_inputs,
|
|
BackendAQuantizer(),
|
|
node_tags,
|
|
)
|
|
|
|
def test_metadata_porting_for_dq_no_static_q(self):
|
|
"""
|
|
Model under test
|
|
conv2d -> avgpool -> hardtanh -> linear
|
|
Dont quantize anything except linear.
|
|
Quantize linear with dynamic quantization
|
|
Check quantization tags on conv2d, avgpool and linear are correctly set
|
|
"""
|
|
|
|
class BackendAQuantizer(Quantizer):
|
|
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
backend_string = "BackendA"
|
|
# dynamic quantization
|
|
quantization_config_dynamic = get_symmetric_quantization_config(
|
|
is_per_channel=True, is_dynamic=True
|
|
)
|
|
annotated_partitions = OP_TO_ANNOTATOR["linear"](
|
|
gm, quantization_config_dynamic
|
|
)
|
|
_tag_partitions(backend_string, "linear_dynamic", annotated_partitions)
|
|
|
|
def validate(self, model: torch.fx.GraphModule) -> None:
|
|
pass
|
|
|
|
example_inputs = (torch.randn(1, 3, 5, 5),)
|
|
choose_qparams_tensor_tags = {"BackendA_linear_dynamic_0"}
|
|
quantize_per_tensor_tensor_tags = {"BackendA_linear_dynamic_0"}
|
|
dequantize_per_tensor_tensor_tags = {"BackendA_linear_dynamic_0"}
|
|
dequantize_per_channel_tags = {"BackendA_linear_dynamic_0"}
|
|
node_tags = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor: quantize_per_tensor_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: dequantize_per_tensor_tensor_tags,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default: dequantize_per_channel_tags,
|
|
torch.ops.quantized_decomposed.choose_qparams.tensor: choose_qparams_tensor_tags,
|
|
}
|
|
self._test_metadata_porting(
|
|
TestHelperModules.Conv2dWithObsSharingOps(),
|
|
example_inputs,
|
|
BackendAQuantizer(),
|
|
node_tags,
|
|
)
|