mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37974 Differential Revision: D21468498 Pulled By: jerryzh168 fbshipit-source-id: 96f34db9f98474ec8e5d33e9b7c406b1637f5de8
82 lines
3.4 KiB
Python
82 lines
3.4 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import torch
|
|
from .qconfig import QConfig
|
|
from torch.jit._recursive import wrap_cpp_module
|
|
|
|
def _check_is_script_module(model):
|
|
if not isinstance(model, torch.jit.ScriptModule):
|
|
raise ValueError('input must be a script module, got: ' + str(type(model)))
|
|
|
|
def _check_forward_method(model):
|
|
if not model._c._has_method('forward'):
|
|
raise ValueError('input script module does not have forward method')
|
|
|
|
def script_qconfig(qconfig):
|
|
return QConfig(
|
|
activation=torch.jit.script(qconfig.activation())._c,
|
|
weight=torch.jit.script(qconfig.weight())._c)
|
|
|
|
def script_qconfig_dict(qconfig_dict):
|
|
return {k: script_qconfig(v) if v else None for k, v in qconfig_dict.items()}
|
|
|
|
def _prepare_script(model, qconfig_dict, is_dynamic):
|
|
_check_is_script_module(model)
|
|
if any(map(lambda x : not isinstance(x, str), qconfig_dict.keys())):
|
|
raise ValueError('qconfig_dict should contain names(str) as keys.')
|
|
scripted_qconfig_dict = script_qconfig_dict(qconfig_dict)
|
|
return wrap_cpp_module(torch._C._jit_pass_insert_observers(model._c,
|
|
'forward',
|
|
scripted_qconfig_dict,
|
|
False,
|
|
is_dynamic))
|
|
|
|
def prepare_script(model, qconfig_dict, inplace=False):
|
|
if not inplace:
|
|
model = model.copy()
|
|
return _prepare_script(model, qconfig_dict, is_dynamic=False)
|
|
|
|
def prepare_dynamic_script(model, qconfig_dict):
|
|
return _prepare_script(model, qconfig_dict, is_dynamic=True)
|
|
|
|
def _convert_script(model, is_dynamic, debug=False):
|
|
_check_is_script_module(model)
|
|
model.eval()
|
|
model = wrap_cpp_module(torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', False, is_dynamic))
|
|
if not debug:
|
|
model = wrap_cpp_module(torch._C._jit_pass_quant_finalize(model._c, is_dynamic))
|
|
return model
|
|
|
|
def convert_script(model, inplace=False, debug=False):
|
|
if not inplace:
|
|
model = model.copy()
|
|
return _convert_script(model, is_dynamic=False, debug=debug)
|
|
|
|
def convert_dynamic_script(model, debug=False):
|
|
return _convert_script(model, is_dynamic=True, debug=debug)
|
|
|
|
def _quantize_script(model, qconfig_dict, run_fn=None, run_args=None, is_dynamic=False, debug=False):
|
|
_check_is_script_module(model)
|
|
_check_forward_method(model)
|
|
torch._C._jit_pass_dedup_module_uses(model._c)
|
|
model = wrap_cpp_module(torch._C._jit_pass_fold_convbn(model._c))
|
|
if is_dynamic:
|
|
model = prepare_dynamic_script(model, qconfig_dict)
|
|
model(*run_args)
|
|
model = convert_dynamic_script(model, debug)
|
|
else:
|
|
model = prepare_script(model, qconfig_dict, True)
|
|
run_fn(model._c._get_method('forward'), *run_args)
|
|
model = convert_script(model, True, debug)
|
|
|
|
return model
|
|
|
|
def quantize_script(model, qconfig_dict, run_fn, run_args, inplace=False, debug=False):
|
|
assert not inplace, "We don't support inplace right now"
|
|
if not inplace:
|
|
model = model.copy()
|
|
return _quantize_script(model, qconfig_dict, run_fn, run_args, is_dynamic=False, debug=debug)
|
|
|
|
def quantize_dynamic_script(model, qconfig_dict, sample_model_inputs, debug=False):
|
|
return _quantize_script(model, qconfig_dict, run_args=sample_model_inputs, is_dynamic=True, debug=debug)
|