mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Custom classes that are serialized with pytree are serialized by default with `f”{class.__module__}.{class.__name__}”`. This is a dependency from our serialized program directly into the outer Python environment. If a user moves the class to a different directory, the serialized program will be unable to be loaded. So, we will require users to pass in an FQN if they want to serialize their custom treespec type.
Differential Revision: [D50886366](https://our.internmc.facebook.com/intern/diff/D50886366)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112428
Approved by: https://github.com/suo
789 lines
23 KiB
Python
789 lines
23 KiB
Python
"""
|
|
Contains utility functions for working with nested python data structures.
|
|
|
|
A *pytree* is Python nested data structure. It is a tree in the sense that
|
|
nodes are Python collections (e.g., list, tuple, dict) and the leaves are
|
|
Python values. Furthermore, a pytree should not contain reference cycles.
|
|
|
|
pytrees are useful for working with nested collections of Tensors. For example,
|
|
one can use `tree_map` to map a function over all Tensors inside some nested
|
|
collection of Tensors and `tree_unflatten` to get a flat list of all Tensors
|
|
inside some nested collection. pytrees are helpful for implementing nested
|
|
collection support for PyTorch APIs.
|
|
|
|
This pytree implementation is not very performant due to Python overhead
|
|
To improve the performance we can move parts of the implementation to C++.
|
|
"""
|
|
|
|
import dataclasses
|
|
import json
|
|
import warnings
|
|
from collections import deque, namedtuple, OrderedDict
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
cast,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
NamedTuple,
|
|
Optional,
|
|
OrderedDict as GenericOrderedDict,
|
|
overload,
|
|
Tuple,
|
|
Type,
|
|
TypeVar,
|
|
Union,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"PyTree",
|
|
"Context",
|
|
"FlattenFunc",
|
|
"UnflattenFunc",
|
|
"DumpableContext",
|
|
"ToDumpableContextFn",
|
|
"FromDumpableContextFn",
|
|
"TreeSpec",
|
|
"LeafSpec",
|
|
"register_pytree_node",
|
|
"tree_flatten",
|
|
"tree_unflatten",
|
|
"tree_leaves",
|
|
"tree_structure",
|
|
"tree_map",
|
|
"tree_map_",
|
|
"tree_map_only",
|
|
"tree_map_only_",
|
|
"tree_all",
|
|
"tree_any",
|
|
"tree_all_only",
|
|
"tree_any_only",
|
|
"treespec_dumps",
|
|
"treespec_loads",
|
|
"treespec_pprint",
|
|
]
|
|
|
|
|
|
T = TypeVar("T")
|
|
S = TypeVar("S")
|
|
U = TypeVar("U")
|
|
R = TypeVar("R")
|
|
|
|
|
|
DEFAULT_TREESPEC_SERIALIZATION_PROTOCOL = 1
|
|
NO_SERIALIZED_TYPE_NAME_FOUND = "NO_SERIALIZED_TYPE_NAME_FOUND"
|
|
|
|
Context = Any
|
|
PyTree = Any
|
|
FlattenFunc = Callable[[PyTree], Tuple[List, Context]]
|
|
UnflattenFunc = Callable[[Iterable, Context], PyTree]
|
|
DumpableContext = Any # Any json dumpable text
|
|
ToDumpableContextFn = Callable[[Context], DumpableContext]
|
|
FromDumpableContextFn = Callable[[DumpableContext], Context]
|
|
ToStrFunc = Callable[["TreeSpec", List[str]], str]
|
|
MaybeFromStrFunc = Callable[[str], Optional[Tuple[Any, Context, str]]]
|
|
|
|
|
|
# A NodeDef holds two callables:
|
|
# - flatten_fn should take the collection and return a flat list of values.
|
|
# It can also return some context that is used in reconstructing the
|
|
# collection.
|
|
# - unflatten_fn should take a flat list of values and some context
|
|
# (returned by flatten_fn). It returns the collection by reconstructing
|
|
# it from the list and the context.
|
|
class NodeDef(NamedTuple):
|
|
type: Type[Any]
|
|
flatten_fn: FlattenFunc
|
|
unflatten_fn: UnflattenFunc
|
|
|
|
|
|
SUPPORTED_NODES: Dict[Type[Any], NodeDef] = {}
|
|
|
|
|
|
# _SerializeNodeDef holds the following:
|
|
# - typ: the type of the node (e.g., "Dict", "List", etc)
|
|
# - serialized_type_name: the fully qualified name of the type, e.g. "collections.OrderedDict"
|
|
# - to_dumpable_context takes a TreeSpec, and returns a serialized string format of the
|
|
# context, and the version number
|
|
# - from_dumpable_context takes in a string representation of the context, and the
|
|
# version, and returns the deserialized context
|
|
class _SerializeNodeDef(NamedTuple):
|
|
typ: Type[Any]
|
|
serialized_type_name: str
|
|
to_dumpable_context: Optional[ToDumpableContextFn]
|
|
from_dumpable_context: Optional[FromDumpableContextFn]
|
|
|
|
|
|
SUPPORTED_SERIALIZED_TYPES: Dict[Type[Any], _SerializeNodeDef] = {}
|
|
SERIALIZED_TYPE_TO_PYTHON_TYPE: Dict[str, Type[Any]] = {}
|
|
|
|
|
|
def _register_pytree_node(
|
|
typ: Any,
|
|
flatten_fn: FlattenFunc,
|
|
unflatten_fn: UnflattenFunc,
|
|
to_str_fn: Optional[ToStrFunc] = None,
|
|
maybe_from_str_fn: Optional[MaybeFromStrFunc] = None,
|
|
*,
|
|
serialized_type_name: Optional[str] = None,
|
|
to_dumpable_context: Optional[ToDumpableContextFn] = None,
|
|
from_dumpable_context: Optional[FromDumpableContextFn] = None,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
typ: the type to register
|
|
flatten_fn: A callable that takes a pytree and returns a flattened
|
|
representation of the pytree and additional context to represent the
|
|
flattened pytree.
|
|
unflatten_fn: A callable that takes a flattened version of the pytree,
|
|
additional context, and returns an unflattedn pytree.
|
|
serialized_type_name: A keyword argument used to specify the fully qualified
|
|
name used when serializing the tree spec.
|
|
to_dumpable_context: An optional keyword argument to custom specify how
|
|
to convert the context of the pytree to a custom json dumpable
|
|
representation. This is used for json serialization, which is being
|
|
used in torch.export right now.
|
|
from_dumpable_context: An optional keyword argument to custom specify how
|
|
to convert the custom json dumpable representation of the context
|
|
back to the original context. This is used for json deserialization,
|
|
which is being used in torch.export right now.
|
|
"""
|
|
if to_str_fn is not None or maybe_from_str_fn is not None:
|
|
warnings.warn(
|
|
"to_str_fn and maybe_from_str_fn is deprecated. "
|
|
"Please use to_dumpable_context and from_dumpable_context instead."
|
|
)
|
|
|
|
node_def = NodeDef(
|
|
typ,
|
|
flatten_fn,
|
|
unflatten_fn,
|
|
)
|
|
SUPPORTED_NODES[typ] = node_def
|
|
|
|
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
|
|
raise ValueError(
|
|
f"Both to_dumpable_context and from_dumpable_context for {typ} must "
|
|
"be None or registered."
|
|
)
|
|
|
|
if serialized_type_name is None:
|
|
serialized_type_name = NO_SERIALIZED_TYPE_NAME_FOUND
|
|
|
|
serialize_node_def = _SerializeNodeDef(
|
|
typ, serialized_type_name, to_dumpable_context, from_dumpable_context
|
|
)
|
|
SUPPORTED_SERIALIZED_TYPES[typ] = serialize_node_def
|
|
SERIALIZED_TYPE_TO_PYTHON_TYPE[serialized_type_name] = typ
|
|
|
|
|
|
register_pytree_node = _register_pytree_node
|
|
|
|
|
|
def _dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
|
|
return list(d.values()), list(d.keys())
|
|
|
|
|
|
def _dict_unflatten(values: Iterable[Any], context: Context) -> Dict[Any, Any]:
|
|
return dict(zip(context, values))
|
|
|
|
|
|
def _list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
|
|
return d, None
|
|
|
|
|
|
def _list_unflatten(values: Iterable[Any], context: Context) -> List[Any]:
|
|
return list(values)
|
|
|
|
|
|
def _tuple_flatten(d: Tuple[Any, ...]) -> Tuple[List[Any], Context]:
|
|
return list(d), None
|
|
|
|
|
|
def _tuple_unflatten(values: Iterable[Any], context: Context) -> Tuple[Any, ...]:
|
|
return tuple(values)
|
|
|
|
|
|
def _namedtuple_flatten(d: NamedTuple) -> Tuple[List[Any], Context]:
|
|
return list(d), type(d)
|
|
|
|
|
|
def _namedtuple_unflatten(values: Iterable[Any], context: Context) -> NamedTuple:
|
|
return cast(NamedTuple, context(*values))
|
|
|
|
|
|
def _namedtuple_serialize(context: Context) -> DumpableContext:
|
|
json_namedtuple = {
|
|
"class_name": context.__name__,
|
|
"fields": context._fields,
|
|
}
|
|
return json_namedtuple
|
|
|
|
|
|
def _namedtuple_deserialize(dumpable_context: DumpableContext) -> Context:
|
|
class_name = dumpable_context["class_name"]
|
|
assert isinstance(class_name, str)
|
|
context = namedtuple(class_name, dumpable_context["fields"]) # type: ignore[misc]
|
|
return context
|
|
|
|
|
|
def _odict_flatten(d: GenericOrderedDict[Any, Any]) -> Tuple[List[Any], Context]:
|
|
return list(d.values()), list(d.keys())
|
|
|
|
|
|
def _odict_unflatten(
|
|
values: Iterable[Any],
|
|
context: Context,
|
|
) -> GenericOrderedDict[Any, Any]:
|
|
return OrderedDict((key, value) for key, value in zip(context, values))
|
|
|
|
|
|
_register_pytree_node(
|
|
dict,
|
|
_dict_flatten,
|
|
_dict_unflatten,
|
|
serialized_type_name="builtins.dict",
|
|
)
|
|
_register_pytree_node(
|
|
list,
|
|
_list_flatten,
|
|
_list_unflatten,
|
|
serialized_type_name="builtins.list",
|
|
)
|
|
_register_pytree_node(
|
|
tuple,
|
|
_tuple_flatten,
|
|
_tuple_unflatten,
|
|
serialized_type_name="builtins.tuple",
|
|
)
|
|
_register_pytree_node(
|
|
namedtuple,
|
|
_namedtuple_flatten,
|
|
_namedtuple_unflatten,
|
|
to_dumpable_context=_namedtuple_serialize,
|
|
from_dumpable_context=_namedtuple_deserialize,
|
|
serialized_type_name="collections.namedtuple",
|
|
)
|
|
_register_pytree_node(
|
|
OrderedDict,
|
|
_odict_flatten,
|
|
_odict_unflatten,
|
|
serialized_type_name="collections.OrderedDict",
|
|
)
|
|
|
|
|
|
# h/t https://stackoverflow.com/questions/2166818/how-to-check-if-an-object-is-an-instance-of-a-namedtuple
|
|
def _is_namedtuple_instance(pytree: Any) -> bool:
|
|
typ = type(pytree)
|
|
bases = typ.__bases__
|
|
if len(bases) != 1 or bases[0] != tuple:
|
|
return False
|
|
fields = getattr(typ, "_fields", None)
|
|
if not isinstance(fields, tuple):
|
|
return False
|
|
return all(type(entry) == str for entry in fields)
|
|
|
|
|
|
def _get_node_type(pytree: Any) -> Any:
|
|
if _is_namedtuple_instance(pytree):
|
|
return namedtuple
|
|
return type(pytree)
|
|
|
|
|
|
# A leaf is defined as anything that is not a Node.
|
|
def _is_leaf(pytree: PyTree) -> bool:
|
|
return _get_node_type(pytree) not in SUPPORTED_NODES
|
|
|
|
|
|
# A TreeSpec represents the structure of a pytree. It holds:
|
|
# "type": the type of root Node of the pytree
|
|
# context: some context that is useful in unflattening the pytree
|
|
# children_specs: specs for each child of the root Node
|
|
# num_leaves: the number of leaves
|
|
@dataclasses.dataclass
|
|
class TreeSpec:
|
|
type: Any
|
|
context: Context
|
|
children_specs: List["TreeSpec"]
|
|
|
|
def __post_init__(self) -> None:
|
|
self.num_leaves: int = sum([spec.num_leaves for spec in self.children_specs])
|
|
|
|
def __repr__(self, indent: int = 0) -> str:
|
|
repr_prefix: str = f"TreeSpec({self.type.__name__}, {self.context}, ["
|
|
children_specs_str: str = ""
|
|
if len(self.children_specs):
|
|
indent += 2
|
|
children_specs_str += self.children_specs[0].__repr__(indent)
|
|
children_specs_str += "," if len(self.children_specs) > 1 else ""
|
|
children_specs_str += ",".join(
|
|
[
|
|
"\n" + " " * indent + child.__repr__(indent)
|
|
for child in self.children_specs[1:]
|
|
]
|
|
)
|
|
repr_suffix: str = f"{children_specs_str}])"
|
|
return repr_prefix + repr_suffix
|
|
|
|
def is_leaf(self) -> bool:
|
|
return isinstance(self, LeafSpec)
|
|
|
|
|
|
class LeafSpec(TreeSpec):
|
|
def __init__(self) -> None:
|
|
super().__init__(None, None, [])
|
|
self.num_leaves = 1
|
|
|
|
def __repr__(self, indent: int = 0) -> str:
|
|
return "*"
|
|
|
|
|
|
# All leaves are equivalent, so represent with a single object to save on
|
|
# object construction time
|
|
_LEAF_SPEC = LeafSpec()
|
|
|
|
|
|
def _tree_flatten_helper(pytree: PyTree, out_leaves: List[Any]) -> TreeSpec:
|
|
if _is_leaf(pytree):
|
|
out_leaves.append(pytree)
|
|
return _LEAF_SPEC
|
|
|
|
node_type = _get_node_type(pytree)
|
|
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
|
|
child_pytrees, context = flatten_fn(pytree)
|
|
|
|
# Recursively flatten the children
|
|
children_specs = [
|
|
_tree_flatten_helper(child, out_leaves) for child in child_pytrees
|
|
]
|
|
|
|
return TreeSpec(node_type, context, children_specs)
|
|
|
|
|
|
def tree_flatten(pytree: PyTree) -> Tuple[List[Any], TreeSpec]:
|
|
"""Flattens a pytree into a list of values and a TreeSpec that can be used
|
|
to reconstruct the pytree.
|
|
"""
|
|
leaves: List[Any] = []
|
|
spec = _tree_flatten_helper(pytree, leaves)
|
|
return leaves, spec
|
|
|
|
|
|
def _tree_leaves_helper(pytree: PyTree, out_leaves: List[Any]) -> None:
|
|
if _is_leaf(pytree):
|
|
out_leaves.append(pytree)
|
|
return
|
|
|
|
node_type = _get_node_type(pytree)
|
|
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
|
|
child_pytrees, _ = flatten_fn(pytree)
|
|
|
|
# Recursively flatten the children
|
|
for child in child_pytrees:
|
|
_tree_leaves_helper(child, out_leaves)
|
|
|
|
|
|
def tree_leaves(pytree: PyTree) -> List[Any]:
|
|
"""Get a list of leaves of a pytree."""
|
|
leaves: List[Any] = []
|
|
_tree_leaves_helper(pytree, leaves)
|
|
return leaves
|
|
|
|
|
|
def tree_structure(pytree: PyTree) -> TreeSpec:
|
|
"""Get the TreeSpec for a pytree."""
|
|
return tree_flatten(pytree)[1]
|
|
|
|
|
|
def tree_unflatten(values: Iterable[Any], spec: TreeSpec) -> PyTree:
|
|
"""Given a list of values and a TreeSpec, builds a pytree.
|
|
This is the inverse operation of `tree_flatten`.
|
|
"""
|
|
if not isinstance(spec, TreeSpec):
|
|
raise TypeError(
|
|
f"tree_unflatten(values, spec): Expected `spec` to be instance of "
|
|
f"TreeSpec but got item of type {type(spec)}.",
|
|
)
|
|
if not isinstance(values, (list, tuple)):
|
|
values = list(values)
|
|
if len(values) != spec.num_leaves:
|
|
raise ValueError(
|
|
f"tree_unflatten(values, spec): `values` has length {len(values)} "
|
|
f"but the spec refers to a pytree that holds {spec.num_leaves} "
|
|
f"items ({spec}).",
|
|
)
|
|
if isinstance(spec, LeafSpec):
|
|
return values[0]
|
|
|
|
unflatten_fn = SUPPORTED_NODES[spec.type].unflatten_fn
|
|
|
|
# Recursively unflatten the children
|
|
start = 0
|
|
end = 0
|
|
child_pytrees = []
|
|
for child_spec in spec.children_specs:
|
|
end += child_spec.num_leaves
|
|
child_pytrees.append(tree_unflatten(values[start:end], child_spec))
|
|
start = end
|
|
|
|
return unflatten_fn(child_pytrees, spec.context)
|
|
|
|
|
|
def tree_map(fn: Any, pytree: PyTree) -> PyTree:
|
|
flat_args, spec = tree_flatten(pytree)
|
|
return tree_unflatten([fn(i) for i in flat_args], spec)
|
|
|
|
|
|
def tree_map_(fn: Any, pytree: PyTree) -> PyTree:
|
|
flat_args = tree_leaves(pytree)
|
|
deque(map(fn, flat_args), maxlen=0) # consume and exhaust the iterable
|
|
return pytree
|
|
|
|
|
|
Type2 = Tuple[Type[T], Type[S]]
|
|
Type3 = Tuple[Type[T], Type[S], Type[U]]
|
|
TypeAny = Union[Type[Any], Tuple[Type[Any], ...]]
|
|
|
|
Fn3 = Callable[[Union[T, S, U]], R]
|
|
Fn2 = Callable[[Union[T, S]], R]
|
|
Fn = Callable[[T], R]
|
|
FnAny = Callable[[Any], R]
|
|
|
|
MapOnlyFn = Callable[[T], Callable[[Any], Any]]
|
|
|
|
|
|
# These specializations help with type inference on the lambda passed to this
|
|
# function
|
|
@overload
|
|
def map_only(ty: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]:
|
|
...
|
|
|
|
|
|
@overload
|
|
def map_only(ty: Type[T]) -> MapOnlyFn[Fn[T, Any]]:
|
|
...
|
|
|
|
|
|
# This specialization is needed for the implementations below that call
|
|
@overload
|
|
def map_only(ty: TypeAny) -> MapOnlyFn[FnAny[Any]]:
|
|
...
|
|
|
|
|
|
def map_only(ty: TypeAny) -> MapOnlyFn[FnAny[Any]]:
|
|
"""
|
|
Suppose you are writing a tree_map over tensors, leaving everything
|
|
else unchanged. Ordinarily you would have to write:
|
|
|
|
def go(t):
|
|
if isinstance(t, Tensor):
|
|
return ...
|
|
else:
|
|
return t
|
|
|
|
With this function, you only need to write:
|
|
|
|
@map_only(Tensor)
|
|
def go(t):
|
|
return ...
|
|
|
|
You can also directly use 'tree_map_only'
|
|
"""
|
|
|
|
def deco(f: Callable[[T], Any]) -> Callable[[Any], Any]:
|
|
def inner(x: T) -> Any:
|
|
if isinstance(x, ty):
|
|
return f(x)
|
|
else:
|
|
return x
|
|
|
|
return inner
|
|
|
|
return deco
|
|
|
|
|
|
@overload
|
|
def tree_map_only(ty: Type[T], fn: Fn[T, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_map_only(ty: Type2[T, S], fn: Fn2[T, S, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_map_only(ty: Type3[T, S, U], fn: Fn3[T, S, U, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
|
|
def tree_map_only(ty: TypeAny, fn: FnAny[Any], pytree: PyTree) -> PyTree:
|
|
return tree_map(map_only(ty)(fn), pytree)
|
|
|
|
|
|
@overload
|
|
def tree_map_only_(ty: Type[T], fn: Fn[T, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_map_only_(ty: Type2[T, S], fn: Fn2[T, S, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_map_only_(ty: Type3[T, S, U], fn: Fn3[T, S, U, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
|
|
def tree_map_only_(ty: TypeAny, fn: FnAny[Any], pytree: PyTree) -> PyTree:
|
|
return tree_map_(map_only(ty)(fn), pytree)
|
|
|
|
|
|
def tree_all(pred: Callable[[Any], bool], pytree: PyTree) -> bool:
|
|
flat_args = tree_leaves(pytree)
|
|
return all(map(pred, flat_args))
|
|
|
|
|
|
def tree_any(pred: Callable[[Any], bool], pytree: PyTree) -> bool:
|
|
flat_args = tree_leaves(pytree)
|
|
return any(map(pred, flat_args))
|
|
|
|
|
|
@overload
|
|
def tree_all_only(ty: Type[T], pred: Fn[T, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_all_only(ty: Type2[T, S], pred: Fn2[T, S, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_all_only(ty: Type3[T, S, U], pred: Fn3[T, S, U, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
|
|
def tree_all_only(ty: TypeAny, pred: FnAny[bool], pytree: PyTree) -> bool:
|
|
flat_args = tree_leaves(pytree)
|
|
return all(pred(x) for x in flat_args if isinstance(x, ty))
|
|
|
|
|
|
@overload
|
|
def tree_any_only(ty: Type[T], pred: Fn[T, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
|
|
@overload
|
|
def tree_any_only(ty: Type2[T, S], pred: Fn2[T, S, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
|
|
def tree_any_only(ty: TypeAny, pred: FnAny[bool], pytree: PyTree) -> bool:
|
|
flat_args = tree_leaves(pytree)
|
|
return any(pred(x) for x in flat_args if isinstance(x, ty))
|
|
|
|
|
|
# Broadcasts a pytree to the provided TreeSpec and returns the flattened
|
|
# values. If this is not possible, then this function returns None.
|
|
#
|
|
# For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
|
|
# would return [0, 0]. This is useful for part of the vmap implementation:
|
|
# a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
|
|
# broadcastable to the tree structure of `inputs` and we use
|
|
# _broadcast_to_and_flatten to check this.
|
|
def _broadcast_to_and_flatten(pytree: PyTree, spec: TreeSpec) -> Optional[List[Any]]:
|
|
assert isinstance(spec, TreeSpec)
|
|
|
|
if _is_leaf(pytree):
|
|
return [pytree] * spec.num_leaves
|
|
if isinstance(spec, LeafSpec):
|
|
return None
|
|
node_type = _get_node_type(pytree)
|
|
if node_type != spec.type:
|
|
return None
|
|
|
|
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
|
|
child_pytrees, ctx = flatten_fn(pytree)
|
|
|
|
# Check if the Node is different from the spec
|
|
if len(child_pytrees) != len(spec.children_specs) or ctx != spec.context:
|
|
return None
|
|
|
|
# Recursively flatten the children
|
|
result: List[Any] = []
|
|
for child, child_spec in zip(child_pytrees, spec.children_specs):
|
|
flat = _broadcast_to_and_flatten(child, child_spec)
|
|
if flat is not None:
|
|
result += flat
|
|
else:
|
|
return None
|
|
|
|
return result
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _TreeSpecSchema:
|
|
"""
|
|
_TreeSpecSchema is the schema used to serialize the TreeSpec
|
|
It contains the following fields:
|
|
- type: A string name of the type. null for the case of a LeafSpec.
|
|
- context: Any format which is json dumpable
|
|
- children_spec: A list of children serialized specs.
|
|
"""
|
|
|
|
type: Optional[str]
|
|
context: DumpableContext
|
|
children_spec: List["_TreeSpecSchema"]
|
|
|
|
|
|
class _ProtocolFn(NamedTuple):
|
|
treespec_to_json: Callable[[TreeSpec], DumpableContext]
|
|
json_to_treespec: Callable[[DumpableContext], TreeSpec]
|
|
|
|
|
|
_SUPPORTED_PROTOCOLS: Dict[int, _ProtocolFn] = {}
|
|
|
|
|
|
def _treespec_to_json(spec: TreeSpec) -> _TreeSpecSchema:
|
|
if isinstance(spec, LeafSpec):
|
|
return _TreeSpecSchema(None, None, [])
|
|
|
|
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[spec.type]
|
|
|
|
serialized_type_name = serialize_node_def.serialized_type_name
|
|
|
|
if serialized_type_name == NO_SERIALIZED_TYPE_NAME_FOUND:
|
|
raise NotImplementedError(
|
|
f"No registered serialization name for {spec.type} found. "
|
|
"Please update your _register_pytree_node call with a `serialized_type_name` kwarg."
|
|
)
|
|
|
|
if serialize_node_def.to_dumpable_context is None:
|
|
try:
|
|
serialized_context = json.dumps(spec.context)
|
|
except TypeError as e:
|
|
raise TypeError(
|
|
"Unable to serialize context. "
|
|
"Please make the context json dump-able, or register a "
|
|
"custom serializer using _register_pytree_node."
|
|
) from e
|
|
else:
|
|
serialized_context = serialize_node_def.to_dumpable_context(spec.context)
|
|
|
|
child_schemas = [_treespec_to_json(child) for child in spec.children_specs]
|
|
|
|
return _TreeSpecSchema(serialized_type_name, serialized_context, child_schemas)
|
|
|
|
|
|
def _json_to_treespec(json_schema: DumpableContext) -> TreeSpec:
|
|
if (
|
|
json_schema["type"] is None
|
|
and json_schema["context"] is None
|
|
and len(json_schema["children_spec"]) == 0
|
|
):
|
|
return LeafSpec()
|
|
|
|
if json_schema["type"] not in SERIALIZED_TYPE_TO_PYTHON_TYPE:
|
|
raise NotImplementedError(
|
|
f'Deserializing {json_schema["type"]} in pytree is not registered.',
|
|
)
|
|
|
|
typ = SERIALIZED_TYPE_TO_PYTHON_TYPE[json_schema["type"]]
|
|
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[typ]
|
|
|
|
if serialize_node_def.from_dumpable_context is None:
|
|
try:
|
|
context = json.loads(json_schema["context"])
|
|
except TypeError as ex:
|
|
raise TypeError(
|
|
"Unable to deserialize context. "
|
|
"Please make the context json load-able, or register a "
|
|
"custom serializer using _register_pytree_node.",
|
|
) from ex
|
|
else:
|
|
context = serialize_node_def.from_dumpable_context(json_schema["context"])
|
|
|
|
children_spec = []
|
|
for child_string in json_schema["children_spec"]:
|
|
children_spec.append(_json_to_treespec(child_string))
|
|
|
|
return TreeSpec(typ, context, children_spec)
|
|
|
|
|
|
_SUPPORTED_PROTOCOLS[1] = _ProtocolFn(_treespec_to_json, _json_to_treespec)
|
|
|
|
|
|
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
|
|
if not isinstance(treespec, TreeSpec):
|
|
raise TypeError(
|
|
f"treespec_dumps(treespec, protocol): Expected `treespec` to be instance of "
|
|
f"TreeSpec but got item of type {type(treespec)}.",
|
|
)
|
|
|
|
if protocol is None:
|
|
protocol = DEFAULT_TREESPEC_SERIALIZATION_PROTOCOL
|
|
|
|
if protocol in _SUPPORTED_PROTOCOLS:
|
|
json_spec = _SUPPORTED_PROTOCOLS[protocol].treespec_to_json(treespec)
|
|
else:
|
|
raise ValueError(
|
|
f"Unknown protocol {protocol}. "
|
|
f"Available protocols: {list(_SUPPORTED_PROTOCOLS.keys())}",
|
|
)
|
|
|
|
str_spec = json.dumps((protocol, dataclasses.asdict(json_spec)))
|
|
return str_spec
|
|
|
|
|
|
def treespec_loads(data: str) -> TreeSpec:
|
|
protocol, json_schema = json.loads(data)
|
|
|
|
if protocol in _SUPPORTED_PROTOCOLS:
|
|
return _SUPPORTED_PROTOCOLS[protocol].json_to_treespec(json_schema)
|
|
raise ValueError(
|
|
f"Unknown protocol {protocol}. "
|
|
f"Available protocols: {list(_SUPPORTED_PROTOCOLS.keys())}",
|
|
)
|
|
|
|
|
|
class _DummyLeaf:
|
|
def __repr__(self) -> str:
|
|
return "*"
|
|
|
|
|
|
def treespec_pprint(treespec: TreeSpec) -> str:
|
|
dummy_tree = tree_unflatten(
|
|
[_DummyLeaf() for _ in range(treespec.num_leaves)],
|
|
treespec,
|
|
)
|
|
return repr(dummy_tree)
|
|
|
|
|
|
# TODO(angelayi): remove this function after OSS/internal stabilize
|
|
def pytree_to_str(spec: TreeSpec) -> str:
|
|
warnings.warn("pytree_to_str is deprecated. Please use treespec_dumps")
|
|
return treespec_dumps(spec)
|
|
|
|
|
|
# TODO(angelayi): remove this function after OSS/internal stabilize
|
|
def str_to_pytree(json: str) -> TreeSpec:
|
|
warnings.warn("str_to_pytree is deprecated. Please use treespec_loads")
|
|
return treespec_loads(json)
|
|
|
|
|
|
def arg_tree_leaves(*args: PyTree, **kwargs: PyTree) -> List[Any]:
|
|
"""Get a flat list of arguments to this function
|
|
|
|
A slightly faster version of tree_leaves((args, kwargs))
|
|
"""
|
|
leaves: List[Any] = []
|
|
for a in args:
|
|
_tree_leaves_helper(a, leaves)
|
|
for a in kwargs.values():
|
|
_tree_leaves_helper(a, leaves)
|
|
return leaves
|