mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
This PR is the final step to making `torch::` the only namespace users of the C++ API ever see. Basically, I did:
``` cpp
namespace torch {
using namespace at;
}
```
And then changed `torch::` to `at::` almost everywhere. This worked surprisingly well out of the box. So users can now write `torch::relu` and `torch::log_softmax` and `torch::conv2d` instead of having to know when to use `at::` and when `torch::`. This is happy!
Another thing I did was to have `using Dtype = at::ScalarType`, which will be the eventual name anyway.
ebetica ezyang apaszke zdevito
Closes https://github.com/pytorch/pytorch/pull/8911
Reviewed By: ezyang
Differential Revision: D8668230
Pulled By: goldsborough
fbshipit-source-id: a72ccb70fca763c396c4b0997d3c4767c8cf4fd3
253 lines
6.9 KiB
C++
253 lines
6.9 KiB
C++
#include <catch.hpp>
|
|
|
|
#include <torch/nn/module.h>
|
|
#include <torch/nn/modules/functional.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/nn/modules/sequential.h>
|
|
#include <torch/optim.h>
|
|
#include <torch/tensor.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/optim_baseline.h>
|
|
#include <test/cpp/api/util.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::optim;
|
|
|
|
bool test_optimizer_xor(Optimizer&& optimizer, Sequential& model) {
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
int64_t bs = 4;
|
|
auto inp = torch::empty({bs, 2});
|
|
auto lab = torch::empty({bs});
|
|
for (size_t i = 0; i < bs; i++) {
|
|
const int64_t a = std::rand() % 2;
|
|
const int64_t b = std::rand() % 2;
|
|
const int64_t c = static_cast<uint64_t>(a) ^ static_cast<uint64_t>(b);
|
|
inp[i][0] = a;
|
|
inp[i][1] = b;
|
|
lab[i] = c;
|
|
}
|
|
inp.set_requires_grad(true);
|
|
optimizer.zero_grad();
|
|
auto x = model.forward(inp);
|
|
torch::Tensor loss = torch::binary_cross_entropy(x, lab);
|
|
loss.backward();
|
|
|
|
optimizer.step();
|
|
|
|
running_loss = running_loss * 0.99 + loss.toCFloat() * 0.01;
|
|
if (epoch > 3000) {
|
|
return false;
|
|
}
|
|
epoch++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Parameters>
|
|
void assign_parameter(
|
|
const Parameters& parameters,
|
|
const char* name,
|
|
torch::Tensor new_tensor) {
|
|
auto parameter = parameters.at(name);
|
|
parameter.set_requires_grad(false);
|
|
parameter.flatten().copy_(new_tensor);
|
|
parameter.set_requires_grad(true);
|
|
}
|
|
|
|
template <typename OptimizerClass, typename Options>
|
|
void check_exact_values(
|
|
Options options,
|
|
std::vector<std::vector<torch::Tensor>> expected_parameters) {
|
|
const size_t kIterations = 1001;
|
|
const size_t kSampleEvery = 100;
|
|
|
|
torch::manual_seed(0);
|
|
Sequential model(
|
|
Linear(2, 3),
|
|
Functional(at::sigmoid),
|
|
Linear(3, 1),
|
|
Functional(at::sigmoid));
|
|
|
|
model.to(torch::kFloat64);
|
|
|
|
// Use exact input values because matching random values is hard.
|
|
auto parameters = model.parameters();
|
|
assign_parameter(
|
|
parameters,
|
|
"0.weight",
|
|
torch::tensor({-0.2109, -0.4976, -0.1413, -0.3420, -0.2524, 0.6976}));
|
|
assign_parameter(
|
|
parameters, "0.bias", torch::tensor({-0.1085, -0.2979, 0.6892}));
|
|
assign_parameter(
|
|
parameters, "2.weight", torch::tensor({-0.0508, -0.3941, -0.2843}));
|
|
assign_parameter(parameters, "2.bias", torch::tensor({-0.0711}));
|
|
|
|
auto optimizer = OptimizerClass(parameters, options);
|
|
torch::Tensor input =
|
|
torch::tensor({0.1, 0.2, 0.3, 0.4, 0.5, 0.6}).reshape({3, 2});
|
|
|
|
for (size_t i = 0; i < kIterations; ++i) {
|
|
optimizer.zero_grad();
|
|
auto output = model.forward(input);
|
|
auto loss = output.sum();
|
|
loss.backward();
|
|
|
|
optimizer.step();
|
|
|
|
if (i % kSampleEvery == 0) {
|
|
REQUIRE(
|
|
expected_parameters.at(i / kSampleEvery).size() == parameters.size());
|
|
for (size_t p = 0; p < parameters.size(); ++p) {
|
|
REQUIRE(parameters.at(p)->defined());
|
|
auto computed = parameters.at(p)->flatten();
|
|
auto expected = expected_parameters.at(i / kSampleEvery).at(p);
|
|
if (!computed.allclose(expected, /*rtol=*/1e-3, /*atol=*/1e-5)) {
|
|
std::cout << "Iteration " << i << ": " << computed
|
|
<< " != " << expected << " (parameter " << p << ")"
|
|
<< std::endl;
|
|
REQUIRE(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence") {
|
|
std::srand(0);
|
|
torch::manual_seed(0);
|
|
Sequential model(
|
|
Linear(2, 8),
|
|
Functional(at::sigmoid),
|
|
Linear(8, 1),
|
|
Functional(at::sigmoid));
|
|
|
|
SECTION("sgd") {
|
|
REQUIRE(test_optimizer_xor(
|
|
SGD(model.parameters(),
|
|
SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(1e-6)),
|
|
model));
|
|
}
|
|
|
|
// // Flaky
|
|
SECTION("lbfgs") {
|
|
auto optimizer = LBFGS(model.parameters(), LBFGSOptions(5e-2).max_iter(5));
|
|
// REQUIRE(test_optimizer_xor(optimizer, model));
|
|
}
|
|
|
|
SECTION("adagrad") {
|
|
REQUIRE(test_optimizer_xor(
|
|
Adagrad(
|
|
model.parameters(),
|
|
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)),
|
|
model));
|
|
}
|
|
|
|
SECTION("rmsprop_simple") {
|
|
REQUIRE(test_optimizer_xor(
|
|
RMSprop(model.parameters(), RMSpropOptions(1e-1).centered(true)),
|
|
model));
|
|
}
|
|
|
|
SECTION("rmsprop") {
|
|
REQUIRE(test_optimizer_xor(
|
|
RMSprop(
|
|
model.parameters(),
|
|
RMSpropOptions(1e-1).momentum(0.9).weight_decay(1e-6)),
|
|
model));
|
|
}
|
|
|
|
// This test appears to be flaky, see
|
|
// https://github.com/pytorch/pytorch/issues/7288
|
|
SECTION("adam") {
|
|
REQUIRE(test_optimizer_xor(
|
|
Adam(model.parameters(), AdamOptions(1.0).weight_decay(1e-6)), model));
|
|
}
|
|
|
|
SECTION("amsgrad") {
|
|
REQUIRE(test_optimizer_xor(
|
|
Adam(
|
|
model.parameters(),
|
|
AdamOptions(0.1).weight_decay(1e-6).amsgrad(true)),
|
|
model));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/Adam") {
|
|
check_exact_values<Adam>(
|
|
AdamOptions(1.0).weight_decay(1e-6), expected_parameters::Adam);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/Adagrad") {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3),
|
|
expected_parameters::Adagrad);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/RMSprop") {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(1e-1).momentum(0.9).weight_decay(1e-6),
|
|
expected_parameters::RMSprop);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/SGD") {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(1e-1).momentum(0.9).weight_decay(1e-6),
|
|
expected_parameters::SGD);
|
|
}
|
|
|
|
TEST_CASE("Optim/ZeroGrad") {
|
|
Linear model(2, 8);
|
|
SGD optimizer(model->parameters(), 0.1);
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
REQUIRE(!parameter->grad().defined());
|
|
}
|
|
|
|
auto output = model->forward(torch::ones({5, 2}));
|
|
auto loss = output.sum();
|
|
loss.backward();
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
REQUIRE(parameter->grad().defined());
|
|
REQUIRE(parameter->grad().sum().toCFloat() > 0);
|
|
}
|
|
|
|
optimizer.zero_grad();
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
REQUIRE(parameter->grad().defined());
|
|
REQUIRE(parameter->grad().sum().toCFloat() == 0);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Optim/ExternalVectorOfParameters") {
|
|
std::vector<torch::Tensor> parameters = {
|
|
torch::randn({2, 2}), torch::randn({3, 3}), torch::randn({4, 4})};
|
|
std::vector<torch::Tensor> original_parameters = {
|
|
parameters[0].clone(), parameters[1].clone(), parameters[2].clone()};
|
|
|
|
// Set all gradients to one
|
|
for (auto& parameter : parameters) {
|
|
parameter.grad() = torch::ones_like(parameter);
|
|
}
|
|
|
|
SGD optimizer(parameters, 1.0);
|
|
|
|
optimizer.step();
|
|
|
|
REQUIRE(parameters[0].allclose(original_parameters[0] - 1.0));
|
|
REQUIRE(parameters[1].allclose(original_parameters[1] - 1.0));
|
|
REQUIRE(parameters[2].allclose(original_parameters[2] - 1.0));
|
|
}
|