mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Use [PEP-562](https://peps.python.org/pep-0562) to import `_dynamo` and `_inductor` only when needed. - Remove redundant imports from tests - Add `test_lazy_imports_are_lazy` to make sure they will not get imported by accident <!-- copilot:poem --> ### <samp>🤖 Generated by Copilot at bae8e90</samp> > _Sing, O Muse, of the daring deeds of PyTorch, the swift and fiery_ > _framework of deep learning, that with skill and cunning wrought_ > _many wonders of dynamic compilation, using the hidden powers_ > _of `_dynamo` and `_inductor`, the secret modules of LLVM and MLIR._ Pull Request resolved: https://github.com/pytorch/pytorch/pull/104368 Approved by: https://github.com/msaroufim, https://github.com/albanD
295 lines
9.2 KiB
Python
295 lines
9.2 KiB
Python
# Owner(s): ["module: inductor"]
|
|
import sys
|
|
import unittest
|
|
from typing import NamedTuple
|
|
|
|
import torch
|
|
from torch._inductor import config
|
|
from torch.testing._internal.common_utils import (
|
|
IS_MACOS,
|
|
slowTest,
|
|
TEST_WITH_ASAN,
|
|
TEST_WITH_ROCM,
|
|
TestCase as TorchTestCase,
|
|
)
|
|
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
|
|
|
|
|
|
try:
|
|
try:
|
|
from . import (
|
|
test_cpu_repro,
|
|
test_foreach,
|
|
test_mkldnn_pattern_matcher,
|
|
test_pattern_matcher,
|
|
test_select_algorithm,
|
|
test_torchinductor,
|
|
test_torchinductor_dynamic_shapes,
|
|
)
|
|
except ImportError:
|
|
import test_cpu_repro
|
|
import test_foreach
|
|
import test_mkldnn_pattern_matcher
|
|
import test_pattern_matcher
|
|
import test_select_algorithm
|
|
import test_torchinductor
|
|
import test_torchinductor_dynamic_shapes
|
|
except unittest.SkipTest:
|
|
if __name__ == "__main__":
|
|
sys.exit(0)
|
|
raise
|
|
|
|
|
|
RUN_CPU = HAS_CPU and not torch.backends.mps.is_available() and not IS_MACOS
|
|
RUN_CUDA = HAS_CUDA and not TEST_WITH_ASAN and not TEST_WITH_ROCM
|
|
|
|
|
|
class CppWrapperTemplate:
|
|
pass
|
|
|
|
|
|
class CudaWrapperTemplate:
|
|
pass
|
|
|
|
|
|
class TestCppWrapper(TorchTestCase):
|
|
device = "cpu"
|
|
|
|
|
|
class DynamicShapesCppWrapperCpuTests(TorchTestCase):
|
|
device = "cpu"
|
|
|
|
|
|
class TestCudaWrapper(TorchTestCase):
|
|
device = "cuda"
|
|
|
|
|
|
class DynamicShapesCudaWrapperCudaTests(TorchTestCase):
|
|
device = "cuda"
|
|
|
|
|
|
# conv2d will fallback for dynamic shapes; the fallback path is not yet supported
|
|
test_failures_cpp_wrapper = {
|
|
"test_conv2d_unary_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
"test_conv2d_binary_inplace_fusion_failed_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
"test_conv2d_binary_inplace_fusion_pass_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
}
|
|
|
|
|
|
def make_test_case(name, device, tests, condition=True, slow=False, func_inputs=None):
|
|
test_name = f"{name}_{device}" if device else name
|
|
|
|
func = getattr(tests, test_name)
|
|
assert callable(func), "not a callable"
|
|
func = slowTest(func) if slow else func
|
|
|
|
@config.patch(cpp_wrapper=True, search_autotune_cache=False)
|
|
def fn(self):
|
|
tests.setUpClass()
|
|
tests.setUp()
|
|
try:
|
|
code = test_torchinductor.run_and_get_cpp_code(
|
|
func, *func_inputs if func_inputs else []
|
|
)
|
|
self.assertEqual("CppWrapperCodeCache" in code, True)
|
|
finally:
|
|
tests.tearDown()
|
|
tests.tearDownClass()
|
|
|
|
fn.__name__ = test_name
|
|
import copy
|
|
|
|
fn.__dict__ = copy.deepcopy(func.__dict__)
|
|
if condition:
|
|
setattr(
|
|
CppWrapperTemplate if device == "cpu" else CudaWrapperTemplate,
|
|
test_name,
|
|
fn,
|
|
)
|
|
|
|
|
|
if RUN_CPU:
|
|
|
|
class BaseTest(NamedTuple):
|
|
name: str
|
|
device: str = "cpu"
|
|
tests: TorchTestCase = test_torchinductor.CpuTests()
|
|
condition: bool = True
|
|
slow: bool = False
|
|
func_inputs: list = None
|
|
|
|
for item in [
|
|
BaseTest("test_as_strided"), # buffer reuse
|
|
BaseTest("test_bitwise"), # int32
|
|
BaseTest("test_bmm1"),
|
|
BaseTest("test_bmm2"),
|
|
BaseTest("test_cat"), # alias
|
|
BaseTest(
|
|
"test_conv2d_binary_inplace_fusion_failed",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPaternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
func_inputs=[
|
|
["op_convolution_pointwise_binary.call"],
|
|
["op_convolution_pointwise_binary_.call"],
|
|
],
|
|
),
|
|
BaseTest(
|
|
"test_conv2d_binary_inplace_fusion_pass",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPaternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
func_inputs=[
|
|
["op_convolution_pointwise_binary_.call"],
|
|
["op_convolution_pointwise_binary.call"],
|
|
],
|
|
),
|
|
BaseTest(
|
|
"test_conv2d_unary",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPaternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
slow=True,
|
|
),
|
|
BaseTest("test_conv_transpose2d_packed", "cpu", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_dtype_sympy_expr"),
|
|
BaseTest("test_embedding_bag"), # test default FallbackKernel
|
|
BaseTest("test_index_put_deterministic_fallback"),
|
|
BaseTest("test_int_div", "", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_linear1"),
|
|
BaseTest("test_linear2"),
|
|
BaseTest(
|
|
"test_linear_binary",
|
|
"",
|
|
test_mkldnn_pattern_matcher.TestPaternMatcher(),
|
|
torch.backends.mkldnn.is_available()
|
|
and torch.ops.mkldnn._is_mkldnn_bf16_supported(),
|
|
),
|
|
BaseTest("test_linear_packed", "", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_mm_views"),
|
|
BaseTest("test_profiler_mark_wrapper_call"),
|
|
BaseTest("test_randint"),
|
|
BaseTest("test_reduction1"), # Reduction
|
|
BaseTest("test_relu"), # multiple inputs
|
|
BaseTest("test_repeat_interleave", "", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_scalar_input"),
|
|
BaseTest("test_silu"), # single input, single output
|
|
BaseTest("test_sort"),
|
|
BaseTest("test_sum_dtype"), # float64
|
|
BaseTest("test_sum_int"), # bool, int64, int8, uint8
|
|
BaseTest("test_tensor2"), # constant input
|
|
BaseTest("test_transpose"), # multiple outputs, buffer clear
|
|
BaseTest("test_view_as_complex"),
|
|
]:
|
|
make_test_case(
|
|
item.name,
|
|
item.device,
|
|
item.tests,
|
|
item.condition,
|
|
item.slow,
|
|
item.func_inputs,
|
|
)
|
|
|
|
test_torchinductor.copy_tests(CppWrapperTemplate, TestCppWrapper, "cpp_wrapper")
|
|
|
|
DynamicShapesCppWrapperTemplate = (
|
|
test_torchinductor_dynamic_shapes.make_dynamic_cls(CppWrapperTemplate)
|
|
)
|
|
|
|
test_torchinductor.copy_tests(
|
|
DynamicShapesCppWrapperTemplate,
|
|
DynamicShapesCppWrapperCpuTests,
|
|
"cpp_wrapper",
|
|
test_failures_cpp_wrapper,
|
|
xfail_prop="_expected_failure_dynamic_wrapper",
|
|
)
|
|
|
|
if RUN_CUDA:
|
|
|
|
class BaseTest(NamedTuple):
|
|
name: str
|
|
device: str = "cuda"
|
|
tests: TorchTestCase = test_torchinductor.CudaTests()
|
|
|
|
# Maintain two separate test lists for cuda and cpp for now
|
|
for item in [
|
|
BaseTest("test_as_strided"), # buffer reuse
|
|
BaseTest("test_batch_norm_2d_2"),
|
|
BaseTest("test_bitwise"), # int32
|
|
BaseTest("test_bmm1"),
|
|
BaseTest("test_bmm2"),
|
|
BaseTest("test_cat"), # alias
|
|
BaseTest("test_convolution1"),
|
|
BaseTest("test_conv_backward"),
|
|
BaseTest("test_embedding_bag"), # test default FallbackKernel
|
|
BaseTest("test_index_put_deterministic_fallback"),
|
|
BaseTest("test_index_tensor"),
|
|
BaseTest("test_linear1"),
|
|
BaseTest("test_linear2"),
|
|
BaseTest("test_mm_views"),
|
|
BaseTest("test_multi_device"),
|
|
BaseTest("test_profiler_mark_wrapper_call"),
|
|
BaseTest("test_reduction1"), # Reduction
|
|
BaseTest("test_relu"), # multiple inputs
|
|
BaseTest("test_scalar_input"),
|
|
BaseTest("test_scaled_dot_product_efficient_attention"),
|
|
BaseTest("test_sort"),
|
|
BaseTest("test_silu"), # single input, single output
|
|
BaseTest("test_sum_dtype"), # float64
|
|
BaseTest("test_sum_int"), # bool, int64, int8, uint8
|
|
BaseTest("test_transpose"), # multiple outputs, buffer clear
|
|
BaseTest(
|
|
"test_foreach_cpp_wrapper",
|
|
device=None,
|
|
tests=test_foreach.ForeachTests(),
|
|
), # test foreach
|
|
BaseTest(
|
|
"test_cat_slice_cat",
|
|
device=None,
|
|
tests=test_pattern_matcher.TestPaternMatcher(),
|
|
),
|
|
BaseTest(
|
|
"test_addmm",
|
|
device=None,
|
|
tests=test_select_algorithm.TestSelectAlgorithm(),
|
|
),
|
|
BaseTest(
|
|
"test_linear_relu",
|
|
device=None,
|
|
tests=test_select_algorithm.TestSelectAlgorithm(),
|
|
),
|
|
BaseTest(
|
|
"test_convolution1",
|
|
device=None,
|
|
tests=test_select_algorithm.TestSelectAlgorithm(),
|
|
),
|
|
BaseTest("test_fft_real_input"),
|
|
BaseTest("test_fft_real_input_real_output"),
|
|
]:
|
|
make_test_case(item.name, item.device, item.tests)
|
|
|
|
test_torchinductor.copy_tests(CudaWrapperTemplate, TestCudaWrapper, "cuda_wrapper")
|
|
|
|
DynamicShapesCudaWrapperTemplate = (
|
|
test_torchinductor_dynamic_shapes.make_dynamic_cls(CudaWrapperTemplate)
|
|
)
|
|
|
|
test_torchinductor.copy_tests(
|
|
DynamicShapesCudaWrapperTemplate,
|
|
DynamicShapesCudaWrapperCudaTests,
|
|
"cuda_wrapper",
|
|
xfail_prop="_expected_failure_dynamic_wrapper",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
if RUN_CPU or RUN_CUDA:
|
|
run_tests(needs="filelock")
|