pytorch/torch/csrc/jit/frontend/tree_views.h
Meghan Lele fcc10d75e1 [JIT] Add property support to TorchScript classes (#42389)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42389

**Summary**
This commit adds support for properties to TorchScript classes,
specifically for getters and setters. They are implemented essentially
as pointers to the methods that the corresponding decorators decorate,
which are treated like regular class methods. Deleters for properties
are considered to be out of scope (and probably useless for TorchScript
anyway).

**Test Plan**
This commit adds a unit test for a class with a property that has both
getter and setter and one that has only a getter.

`python test/test_jit.py TestClassType.test_properties`

Test Plan: Imported from OSS

Reviewed By: eellison, ppwwyyxx

Differential Revision: D22880232

Pulled By: SplitInfinity

fbshipit-source-id: 4828640f4234cb3b0d4f3da4872a75fbf519e5b0
2020-08-14 12:56:57 -07:00

1140 lines
32 KiB
C++

#pragma once
#include <c10/util/string_utils.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/frontend/strtod.h>
#include <torch/csrc/jit/frontend/tree.h>
#include <functional>
#include <iostream>
#include <string>
namespace torch {
namespace jit {
// clang-format off
// TreeView provides a statically-typed way to traverse the tree, which should
// be formed according to the grammar below.
//
// A few notes on types and their aliases:
// - List<T> is really a Tree with kind TK_LIST and elements as subtrees
// - Maybe<T> is really a Tree with kind TK_OPTION that has 0 or 1 subtree of type T
// - Builtin types are: Ident (TK_IDENT), String (TK_STRING)
//
// Param = Param(Maybe<Expr> type, Ident name) TK_PARAM
//
// Decl = Decl(List<Param> params, Maybe<Expr> return_type) TK_DECL
// Def = Def(Ident name, Decl decl, List<Stmt> body) TK_DEF
// ClassDef = ClassDef(Ident name, TK_CLASS_DEF
// Maybe<Expr> superclass,
// List<Stmt> body)
//
// Stmt = If(Expr cond, List<Stmt> true_body, List<Stmt> false_body) TK_IF
// | For(List<Expr> targets, List<Expr> iters, List<Stmt> body) TK_FOR
// | While(Expr cond, List<Stmt> body) TK_WHILE
// | Global(List<Ident> idents) TK_GLOBAL
// -- NB: the only type of Expr's allowed on lhs are Var
// Or a tuple containing Var with an optional terminating Starred
// | Assign(Expr lhs, Maybe<Expr> rhs, Maybe<Expr> type) TK_ASSIGN
// | AugAssign(Expr lhs, AugAssignKind aug_op, Expr rhs) TK_AUG_ASSIGN
// | Return(List<Expr> values) TK_RETURN
// | ExprStmt(List<Expr> expr) TK_EXPR_STMT
// | Raise(Expr expr) TK_RAISE
// | Def TK_DEF
// | With(List<WithItem> targets, List<Stmt> body) TK_WITH
//
// Expr = TernaryIf(Expr cond, Expr true_expr, Expr false_expr) TK_IF_EXPR
// | BinOp(Expr lhs, Expr rhs)
// | And TK_AND
// | Or TK_OR
// | Lt '<'
// | Gt '>'
// | Eq TK_EQ
// | Le TK_LE
// | Ge TK_GE
// | Ne TK_NE
// | Is TK_IS
// | IsNot TK_ISNOT
// | Add '+'
// | Sub '-'
// | Mul '*'
// | Div '/'
// | Mod '%'
// | MatMult '@'
// | Pow TK_POW
// | UnaryOp(Expr expr)
// | Not TK_NOT
// | USub '-'
// | Const(String value) TK_CONST
// -- NB: x.name(y) is desugared into name(x, y)
// | Apply(Ident name, List<Expr> args, List<Attribute> kwargs) TK_APPLY
// | Select(Expr value, Ident selector) '.'
// | Subscript(Expr value, List<Expr> subscript_exprs) TK_SUBSCRIPT
// | SliceExpr(Maybe<Expr> start, Maybe<Expr> end) TK_SLICE_EXPR
// | Var(Ident name) TK_VAR
// | ListLiteral(List<Expr> inputs) TK_LIST_LITERAL
// | TupleLiteral(List<Expr> inputs) TK_TUPLE_LITERAL
// | Starred(Expr expr) TK_STARRED
// | WithItem(Expr target, Maybe<Var> var) TK_WITH_ITEM
// -- NB: only allowed expressions are Const or List(Const)
// (List as a value, not type constructor)
// Attribute = Attribute(Ident name, Expr value) TK_ATTRIBUTE
//
// AugAssignKind =
// | Add() TK_PLUS_EQ
// | Sub() TK_MINUS_EQ
// | Mul() TK_TIMES_EQ
// | Div() TK_DIV_EQ
// | Mod() TK_MOD_EQ
//
// Each subclass of TreeView should provide:
// 1. Constructor that takes a TreeRef, and checks that it's of the right type.
// 2. Accessors that get underlying information out of the object. If they
// return subtrees, they should wrap them in appropriate views too.
// 3. Static method 'create' that creates the underlying TreeRef object
// for every TreeRef kind that has a TreeView, the parser always uses
// (e.g.) Ident::create rather than Compound::Create, this means that
// changes to the structure of Ident are always made right here rather
// than both in the parser and in this code.
// XXX: these structs should have no fields to prevent slicing when passing by value
// clang-format on
struct TreeView {
explicit TreeView(TreeRef tree) : tree_(std::move(tree)) {}
TreeRef tree() const {
return tree_;
}
const SourceRange& range() const {
return tree_->range();
}
operator TreeRef() const {
return tree_;
}
const TreeRef& get() const {
return tree_;
}
int kind() const {
return tree_->kind();
}
void dump() const {
std::cout << tree_;
}
protected:
const TreeRef& subtree(size_t i) const {
return tree_->trees().at(i);
}
TreeRef tree_;
};
template <typename T>
struct ListIterator {
ListIterator(TreeList::const_iterator it) : it(it) {}
bool operator!=(const ListIterator& rhs) const {
return it != rhs.it;
}
bool operator==(const ListIterator& rhs) const {
return it == rhs.it;
}
T operator*() const {
return T(*it);
}
ListIterator& operator+=(std::ptrdiff_t n) {
it += n;
return *this;
}
ListIterator& operator++() {
++it;
return *this;
}
ListIterator& operator--() {
--it;
return *this;
}
private:
TreeList::const_iterator it;
};
template <typename T>
struct List : public TreeView {
using iterator = ListIterator<T>;
using const_iterator = ListIterator<T>;
List(const TreeRef& tree) : TreeView(tree) {
tree->match(TK_LIST);
// Iterate over list to temporarily instantiate Ts that will check the type
for (const T& elem : *this) {
(void)elem; // silence unused warning
}
}
iterator begin() const {
return iterator(tree_->trees().begin());
}
iterator end() const {
return iterator(tree_->trees().end());
}
bool empty() const {
return tree_->trees().begin() == tree_->trees().end();
}
T operator[](size_t i) const {
return T(subtree(i));
}
TreeRef map(const std::function<TreeRef(const T&)>& fn) {
return tree_->map([&](TreeRef v) { return fn(T(v)); });
}
static List create(const SourceRange& range, const std::vector<T>& subtrees) {
TreeList type_erased_sub{subtrees.begin(), subtrees.end()};
return List(Compound::create(TK_LIST, range, std::move(type_erased_sub)));
}
static List unsafeCreate(const SourceRange& range, TreeList&& subtrees) {
return List(Compound::create(TK_LIST, range, std::move(subtrees)));
}
size_t size() const {
return tree_->trees().size();
}
};
template <typename T>
struct Maybe : public TreeView {
explicit Maybe(const TreeRef& tree) : TreeView(tree) {
tree_->match(TK_OPTION);
if (tree_->trees().size() > 1)
throw ErrorReport(tree) << "Maybe trees can have at most one subtree";
}
/* implicit */ Maybe(const T& tree) : TreeView(tree) {}
bool present() const {
return tree_->trees().size() > 0;
}
T get() const {
return T(tree_->trees().at(0));
}
TreeRef map(const std::function<TreeRef(const T&)>& fn) {
return tree_->map([&](TreeRef v) { return fn(T(v)); });
}
static Maybe<T> create(const SourceRange& range) {
return Maybe<T>(Compound::create(TK_OPTION, range, {}));
}
static Maybe<T> create(const SourceRange& range, const T& value) {
return Maybe<T>(Compound::create(TK_OPTION, range, {value}));
}
};
struct Ident : public TreeView {
explicit Ident(const TreeRef& tree) : TreeView(tree) {
tree_->match(TK_IDENT);
}
const std::string& name() const {
return subtree(0)->stringValue();
}
static Ident create(const SourceRange& range, const std::string& name) {
return Ident(Compound::create(TK_IDENT, range, {String::create(name)}));
}
};
////////////////////////////////////////////////////////////////////////////////
// Base types (production LHS)
////////////////////////////////////////////////////////////////////////////////
struct Stmt : public TreeView {
explicit Stmt(const TreeRef& tree) : TreeView(tree) {
switch (tree->kind()) {
case TK_IF:
case TK_FOR:
case TK_WHILE:
case TK_GLOBAL:
case TK_ASSIGN:
case TK_AUG_ASSIGN:
case TK_RETURN:
case TK_EXPR_STMT:
case TK_RAISE:
case TK_ASSERT:
case TK_PASS:
case TK_BREAK:
case TK_DELETE:
case TK_CONTINUE:
case TK_DEF:
case TK_WITH:
return;
default:
throw ErrorReport(tree)
<< kindToString(tree->kind()) << " is not a valid Stmt";
}
}
};
struct Expr : public TreeView {
explicit Expr(const TreeRef& tree) : TreeView(tree) {
switch (tree->kind()) {
case TK_IF_EXPR:
case TK_AND:
case TK_OR:
case '<':
case '>':
case TK_IS:
case TK_ISNOT:
case TK_EQ:
case TK_LE:
case TK_GE:
case TK_NE:
case '+':
case '-':
case TK_UNARY_MINUS:
case '~':
case '*':
case TK_STARRED:
case '/':
case '%':
case TK_NOT:
case TK_CONST:
case TK_STRINGLITERAL:
case TK_TRUE:
case TK_FALSE:
case TK_NONE:
case TK_CAST:
case TK_APPLY:
case '.':
case TK_SUBSCRIPT:
case TK_SLICE_EXPR:
case TK_VAR:
case TK_LIST_LITERAL:
case TK_TUPLE_LITERAL:
case TK_DICT_LITERAL:
case '@':
case TK_POW:
case TK_LSHIFT:
case TK_RSHIFT:
case TK_FLOOR_DIV:
case '&':
case '^':
case '|':
case TK_LIST_COMP:
case TK_DOTS:
case TK_IN:
case TK_WITH_ITEM:
return;
default:
throw ErrorReport(tree)
<< kindToString(tree->kind()) << " is not a valid Expr";
}
}
};
////////////////////////////////////////////////////////////////////////////////
// Helper nodes (mostly for function arguments)
////////////////////////////////////////////////////////////////////////////////
struct Attribute : public TreeView {
explicit Attribute(const TreeRef& tree) : TreeView(tree) {
tree_->match(TK_ATTRIBUTE);
}
Ident name() const {
return Ident(subtree(0));
}
Expr value() const {
return Expr(subtree(1));
}
static Attribute create(
const SourceRange& range,
const Ident& name,
const TreeRef& value) {
return Attribute(Compound::create(TK_ATTRIBUTE, range, {name, value}));
}
};
struct Param : public TreeView {
explicit Param(const TreeRef& tree) : TreeView(tree) {
tree_->match(TK_PARAM);
}
static Param create(
const SourceRange& range,
const Ident& ident,
const Maybe<Expr>& type,
const Maybe<Expr>& def,
bool kwarg_only) {
TreeRef kwarg_only_tree =
Compound::create(kwarg_only ? TK_TRUE : TK_FALSE, range, {});
return Param(
Compound::create(TK_PARAM, range, {ident, type, def, kwarg_only_tree}));
}
Ident ident() const {
return Ident(subtree(0));
}
Maybe<Expr> type() const {
return Maybe<Expr>(subtree(1));
}
Maybe<Expr> defaultValue() const {
return Maybe<Expr>(subtree(2));
}
bool kwarg_only() const {
return TK_TRUE == subtree(3)->kind();
}
Param withType(const Maybe<Expr>& typ) const {
return Param::create(range(), ident(), typ, defaultValue(), kwarg_only());
}
};
////////////////////////////////////////////////////////////////////////////////
// Top level definitions
////////////////////////////////////////////////////////////////////////////////
struct Decl : public TreeView {
explicit Decl(const TreeRef& tree) : TreeView(tree) {
tree->match(TK_DECL);
}
List<Param> params() const {
return List<Param>(subtree(0));
}
Maybe<Expr> return_type() const {
return Maybe<Expr>(subtree(1));
}
static Decl create(
const SourceRange& range,
const List<Param>& params,
const Maybe<Expr>& return_type) {
return Decl(Compound::create(TK_DECL, range, {params, return_type}));
}
};
struct Def : public TreeView {
explicit Def(const TreeRef& tree) : TreeView(tree) {
tree->match(TK_DEF);
}
Def withName(std::string new_name) const {
auto new_ident = Ident::create(name().range(), std::move(new_name));
return create(range(), new_ident, decl(), statements());
}
Def withDecl(Decl decl) const {
return create(range(), name(), decl, statements());
}
Ident name() const {
return Ident(subtree(0));
}
Decl decl() const {
return Decl(subtree(1));
}
List<Stmt> statements() const {
return List<Stmt>(subtree(2));
}
static Def create(
const SourceRange& range,
const Ident& name,
const Decl& decl,
const List<Stmt>& stmts) {
return Def(Compound::create(TK_DEF, range, {name, decl, stmts}));
}
};
// Property represents a named attribute combined with a getter and setter
// method to access and mutate that attribute.
struct Property : public TreeView {
explicit Property(const TreeRef& tree) : TreeView(tree) {
tree->match(TK_PROP);
}
Ident name() const {
return Ident(subtree(0));
}
Def getter() const {
return Def(subtree(1));
}
Maybe<Def> setter() const {
return Maybe<Def>(subtree(2));
}
static Property create(
const SourceRange& range,
const Ident& name,
const Def& getter,
const Maybe<Def>& setter) {
return Property(Compound::create(TK_PROP, range, {name, getter, setter}));
}
};
struct ClassDef : public TreeView {
explicit ClassDef(const TreeRef& tree) : TreeView(tree) {
tree->match(TK_CLASS_DEF);
}
ClassDef withName(std::string new_name) const {
auto new_ident = Ident::create(name().range(), std::move(new_name));
return create(range(), new_ident, superclass(), body());
}
Ident name() const {
return Ident(subtree(0));
}
Maybe<Expr> superclass() const {
return Maybe<Expr>(subtree(1));
}
List<Stmt> body() const {
return List<Stmt>(subtree(2));
}
Maybe<List<Property>> properties() const {
return Maybe<List<Property>>(subtree(3));
}
static ClassDef create(
const SourceRange& range,
const Ident& name,
const Maybe<Expr>& superclass,
const List<Stmt>& body,
c10::optional<const List<Property>> properties = {}) {
auto props = properties.has_value()
? Maybe<List<Property>>::create(range, properties.value())
: Maybe<List<Property>>::create(range);
return ClassDef(
Compound::create(TK_CLASS_DEF, range, {name, superclass, body, props}));
}
};
////////////////////////////////////////////////////////////////////////////////
// Statements
////////////////////////////////////////////////////////////////////////////////
struct If : public Stmt {
explicit If(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_IF);
}
Expr cond() const {
return Expr(subtree(0));
}
List<Stmt> trueBranch() const {
return List<Stmt>(subtree(1));
}
List<Stmt> falseBranch() const {
return List<Stmt>(subtree(2));
}
If withNewBranches(
const List<Stmt>& true_branch,
const List<Stmt>& false_branch) const {
return create(range(), cond(), true_branch, false_branch);
}
static If create(
const SourceRange& range,
const Expr& cond,
const List<Stmt>& true_branch,
const List<Stmt>& false_branch) {
return If(
Compound::create(TK_IF, range, {cond, true_branch, false_branch}));
}
};
struct While : public Stmt {
explicit While(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_WHILE);
}
Expr cond() const {
return Expr(subtree(0));
}
List<Stmt> body() const {
return List<Stmt>(subtree(1));
}
static While create(
const SourceRange& range,
const Expr& cond,
const List<Stmt>& body) {
return While(Compound::create(TK_WHILE, range, {cond, body}));
}
};
struct For : public Stmt {
explicit For(const TreeRef& tree) : Stmt(tree) {
tree->match(TK_FOR);
}
List<Expr> targets() const {
return List<Expr>(subtree(0));
}
List<Expr> itrs() const {
return List<Expr>(subtree(1));
}
List<Stmt> body() const {
return List<Stmt>(subtree(2));
}
static For create(
const SourceRange& range,
const List<Expr>& targets,
const List<Expr>& itrs,
const List<Stmt>& body) {
return For(Compound::create(TK_FOR, range, {targets, itrs, body}));
}
};
// TODO: supports only single comprehension for now
struct ListComp : public Expr {
explicit ListComp(const TreeRef& tree) : Expr(tree) {
tree->match(TK_LIST_COMP);
}
Expr elt() const {
return Expr(subtree(0));
}
Expr target() const {
return Expr(subtree(1));
}
Expr iter() const {
return Expr(subtree(2));
}
// TODO: no ifs for now
static ListComp create(
const SourceRange& range,
const Expr& elt,
const Expr& target,
const Expr& iter) {
return ListComp(Compound::create(TK_LIST_COMP, range, {elt, target, iter}));
}
};
struct Global : public Stmt {
explicit Global(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_GLOBAL);
}
List<Ident> names() {
return List<Ident>(subtree(0));
}
static Global create(const SourceRange& range, const List<Ident>& names) {
return Global(Compound::create(TK_GLOBAL, range, {names}));
}
};
struct AugAssignKind : public TreeView {
explicit AugAssignKind(const TreeRef& tree) : TreeView(tree) {
switch (tree->kind()) {
case '+':
case '-':
case '*':
case '/':
case '%':
return;
default:
throw ErrorReport(tree) << "is not a valid AugAssignKind";
}
}
};
// Augmented assignment, like "foo += bar"
struct AugAssign : public Stmt {
explicit AugAssign(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_AUG_ASSIGN);
}
static AugAssign create(
const SourceRange& range,
const Expr& lhs,
const AugAssignKind& aug_op,
const Expr& rhs) {
return AugAssign(
Compound::create(TK_AUG_ASSIGN, range, {lhs, aug_op, rhs}));
}
Expr lhs() const {
return Expr(subtree(0));
}
int aug_op() const {
return subtree(1)->kind();
}
Expr rhs() const {
return Expr(subtree(2));
}
};
struct Assign : public Stmt {
explicit Assign(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_ASSIGN);
}
static Assign create(
const SourceRange& range,
const List<Expr>& lhs,
const Maybe<Expr>& rhs,
const Maybe<Expr>& type) {
return Assign(Compound::create(TK_ASSIGN, range, {lhs, rhs, type}));
}
List<Expr> lhs_list() const {
return List<Expr>(subtree(0));
}
Expr lhs() const {
const auto& li = lhs_list();
TORCH_INTERNAL_ASSERT(li.size() == 1);
return *li.begin();
}
Maybe<Expr> rhs() const {
return Maybe<Expr>(subtree(1));
}
Maybe<Expr> type() const {
return Maybe<Expr>(subtree(2));
}
};
struct Return : public Stmt {
explicit Return(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_RETURN);
}
Expr expr() const {
return Expr(subtree(0));
}
static Return create(const SourceRange& range, const Expr& value) {
return Return(Compound::create(TK_RETURN, range, {value}));
}
};
struct Raise : public Stmt {
explicit Raise(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_RAISE);
}
Expr expr() const {
return Expr(subtree(0));
}
static Raise create(const SourceRange& range, const Expr& expr) {
return Raise(Compound::create(TK_RAISE, range, {expr}));
}
};
struct Assert : public Stmt {
explicit Assert(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_ASSERT);
}
Expr test() const {
return Expr(subtree(0));
}
Maybe<Expr> msg() const {
return Maybe<Expr>(subtree(1));
}
static Assert create(
const SourceRange& range,
const Expr& test,
const Maybe<Expr>& msg) {
return Assert(Compound::create(TK_ASSERT, range, {test, msg}));
}
};
struct Pass : public Stmt {
explicit Pass(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_PASS);
}
static Pass create(const SourceRange& range) {
return Pass(Compound::create(TK_PASS, range, {}));
}
};
struct Dots : public Expr {
explicit Dots(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_DOTS);
}
static Dots create(const SourceRange& range) {
return Dots(Compound::create(TK_DOTS, range, {}));
}
};
struct Break : public Stmt {
explicit Break(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_BREAK);
}
static Break create(const SourceRange& range) {
return Break(Compound::create(TK_BREAK, range, {}));
}
};
struct Continue : public Stmt {
explicit Continue(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_CONTINUE);
}
static Continue create(const SourceRange& range) {
return Continue(Compound::create(TK_CONTINUE, range, {}));
}
};
struct ExprStmt : public Stmt {
explicit ExprStmt(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_EXPR_STMT);
}
Expr expr() {
return Expr(subtree(0));
}
static ExprStmt create(const SourceRange& range, const Expr& list) {
return ExprStmt(Compound::create(TK_EXPR_STMT, range, {list}));
}
};
////////////////////////////////////////////////////////////////////////////////
// Expressions
////////////////////////////////////////////////////////////////////////////////
struct BinOp : public Expr {
explicit BinOp(const TreeRef& tree) : Expr(tree) {
switch (tree->kind()) {
case TK_AND:
case TK_OR:
case '<':
case '>':
case TK_IS:
case TK_ISNOT:
case TK_EQ:
case TK_LE:
case TK_GE:
case TK_NE:
case '+':
case '*':
case '/':
case '-':
case '@':
case TK_POW:
case TK_LSHIFT:
case TK_RSHIFT:
case '%':
case '&':
case '^':
case '|':
case TK_FLOOR_DIV:
case TK_IN:
if (tree->trees().size() != 2)
throw ErrorReport(tree)
<< "BinOp expected 2 subtrees, found " << tree->trees().size();
return;
default:
throw ErrorReport(tree)
<< kindToString(tree->kind()) << " is not a valid BinOp";
}
}
Expr lhs() const {
return Expr(subtree(0));
}
Expr rhs() const {
return Expr(subtree(1));
}
static BinOp create(
const SourceRange& range,
int kind,
const Expr& lhs,
const Expr& rhs) {
return BinOp(Compound::create(kind, range, {lhs, rhs}));
}
};
struct UnaryOp : public Expr {
explicit UnaryOp(const TreeRef& tree) : Expr(tree) {
switch (tree->kind()) {
case TK_UNARY_MINUS:
case '~':
case TK_NOT:
if (tree->trees().size() != 1)
throw ErrorReport(tree)
<< "UnaryOp expected 1 subtree, found " << tree->trees().size();
return;
default:
throw ErrorReport(tree)
<< kindToString(tree->kind()) << " is not a valid UnaryOp";
}
}
static UnaryOp create(const SourceRange& range, int kind, const Expr& expr) {
return UnaryOp(Compound::create(kind, range, {expr}));
}
};
struct Const : public Expr {
explicit Const(const TreeRef& tree) : Expr(tree) {
tree_->matchNumSubtrees(TK_CONST, 1);
}
bool isFloatingPoint() const {
bool is_inf = subtree(0)->stringValue() == "inf";
return is_inf ||
subtree(0)->stringValue().find_first_of(".eE") != std::string::npos;
}
bool isIntegral() const {
return !isFloatingPoint();
}
int64_t asIntegral() const {
try {
return c10::stoll(subtree(0)->stringValue(), /*pos=*/0, /*base=*/0);
} catch (const std::out_of_range& e) {
throw ErrorReport(range()) << "Integral constant out of range "
"(must fit in a signed 64 bit integer)";
}
}
double asFloatingPoint() const {
// We can't pass in nullptr as the dummy pointer gets dereferenced for
// Android version of strtod_c().
char* dummy;
return torch::jit::strtod_c(subtree(0)->stringValue().c_str(), &dummy);
}
const std::string& text() const {
return subtree(0)->stringValue();
}
static Const create(const SourceRange& range, const std::string& value) {
return Const(Compound::create(TK_CONST, range, {String::create(value)}));
}
};
struct StringLiteral : public Expr {
explicit StringLiteral(const TreeRef& tree) : Expr(tree) {
tree_->matchNumSubtrees(TK_STRINGLITERAL, 1);
}
const std::string& text() const {
return subtree(0)->stringValue();
}
static StringLiteral create(
const SourceRange& range,
const std::string& value) {
return StringLiteral(
Compound::create(TK_STRINGLITERAL, range, {String::create(value)}));
}
};
struct Apply : public Expr {
explicit Apply(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_APPLY);
}
Expr callee() const {
return Expr(subtree(0));
}
List<Expr> inputs() const {
return List<Expr>(subtree(1));
}
List<Attribute> attributes() const {
return List<Attribute>(subtree(2));
}
static Apply create(
const SourceRange& range,
const Expr& callee,
const List<Expr>& inputs,
const List<Attribute>& attributes) {
return Apply(
Compound::create(TK_APPLY, range, {callee, inputs, attributes}));
}
};
struct Select : public Expr {
explicit Select(const TreeRef& tree) : Expr(tree) {
tree_->match('.');
}
Expr value() const {
return Expr(subtree(0));
}
Ident selector() const {
return Ident(subtree(1));
}
static Select create(
const SourceRange& range,
const Expr& value,
const Ident& selector) {
return Select(Compound::create('.', range, {value, selector}));
}
};
struct SliceExpr : public Expr {
explicit SliceExpr(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_SLICE_EXPR);
}
Maybe<Expr> start() const {
return Maybe<Expr>(subtree(0));
}
Maybe<Expr> end() const {
return Maybe<Expr>(subtree(1));
}
Maybe<Expr> step() const {
return Maybe<Expr>(subtree(2));
}
Expr startOr(int alternative) const {
const auto startOption = start();
return startOption.present() ? startOption.get() : createInt(alternative);
}
Expr endOr(int alternative) const {
const auto endOption = end();
return endOption.present() ? endOption.get() : createInt(alternative);
}
Expr stepOr(int alternative) const {
const auto stepOption = step();
return stepOption.present() ? stepOption.get() : createInt(alternative);
}
static SliceExpr create(
const SourceRange& range,
const Maybe<Expr>& start,
const Maybe<Expr>& end,
const Maybe<Expr>& step) {
return SliceExpr(
Compound::create(TK_SLICE_EXPR, range, {start, end, step}));
}
private:
Expr createInt(int value) const {
return Expr(Const::create(range(), c10::to_string(value)));
}
};
struct Subscript : public Expr {
explicit Subscript(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_SUBSCRIPT);
}
Expr value() const {
return Expr(subtree(0));
}
List<Expr> subscript_exprs() const {
return List<Expr>(subtree(1));
}
static Subscript create(
const SourceRange& range,
const Expr& value,
const List<Expr>& subscript_exprs) {
auto whole_range = SourceRange(
range.source(), range.start(), subscript_exprs.range().end() + 1);
return Subscript(
Compound::create(TK_SUBSCRIPT, whole_range, {value, subscript_exprs}));
}
};
struct Var : public Expr {
explicit Var(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_VAR);
};
Ident name() const {
return Ident(subtree(0));
}
static Var create(const SourceRange& range, const Ident& name) {
return Var(Compound::create(TK_VAR, range, {name}));
}
};
// WithItem represents an item using with a WithStmt.
struct WithItem : public Expr {
explicit WithItem(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_WITH_ITEM);
}
Expr target() const {
return Expr(subtree(0));
}
Maybe<Var> var() const {
return Maybe<Var>(subtree(1));
}
static WithItem create(
const SourceRange& range,
const Expr& target,
const Maybe<Var>& var) {
return WithItem(Compound::create(TK_WITH_ITEM, range, {target, var}));
}
};
// With represents a with statement consisting of a list of with items and a
// body of statements.
struct With : public Stmt {
explicit With(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_WITH);
}
List<WithItem> targets() const {
return List<WithItem>(subtree(0));
}
List<Stmt> body() const {
return List<Stmt>(subtree(1));
}
static With create(
const SourceRange& range,
const List<WithItem>& targets,
const List<Stmt>& body) {
return With(Compound::create(TK_WITH, range, {targets, body}));
}
};
struct TernaryIf : public Expr {
explicit TernaryIf(const TreeRef& tree) : Expr(tree) {
tree_->matchNumSubtrees(TK_IF_EXPR, 3);
};
Expr cond() const {
return Expr(subtree(0));
}
Expr true_expr() const {
return Expr(subtree(1));
}
Expr false_expr() const {
return Expr(subtree(2));
}
static TernaryIf create(
const SourceRange& range,
const Expr& cond,
const Expr& true_expr,
const Expr& false_expr) {
return TernaryIf(
Compound::create(TK_IF_EXPR, range, {cond, true_expr, false_expr}));
};
};
struct ListLiteral : public Expr {
explicit ListLiteral(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_LIST_LITERAL);
}
List<Expr> inputs() const {
return subtree(0);
}
static ListLiteral create(
const SourceRange& range,
const List<Expr>& inputs) {
return ListLiteral(Compound::create(TK_LIST_LITERAL, range, {inputs}));
}
};
struct TupleLiteral : public Expr {
explicit TupleLiteral(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_TUPLE_LITERAL);
}
List<Expr> inputs() const {
return subtree(0);
}
static TupleLiteral create(
const SourceRange& range,
const List<Expr>& inputs) {
return TupleLiteral(Compound::create(TK_TUPLE_LITERAL, range, {inputs}));
}
};
struct DictLiteral : public Expr {
explicit DictLiteral(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_DICT_LITERAL);
}
List<Expr> key_inputs() const {
return subtree(0);
}
List<Expr> value_inputs() const {
return subtree(1);
}
static DictLiteral create(
const SourceRange& range,
const List<Expr>& keys,
const List<Expr>& values) {
return DictLiteral(
Compound::create(TK_DICT_LITERAL, range, {keys, values}));
}
};
struct Starred : public Expr {
explicit Starred(const TreeRef& tree) : Expr(tree) {
tree_->match(TK_STARRED);
}
Expr expr() const {
return Expr(subtree(0));
}
static Starred create(const SourceRange& range, const Expr& expr) {
return Starred(Compound::create(TK_STARRED, range, {expr}));
}
};
struct Delete : public Stmt {
explicit Delete(const TreeRef& tree) : Stmt(tree) {
tree_->match(TK_DELETE);
}
Expr expr() const {
return Expr(subtree(0));
}
static Delete create(const Expr& value) {
return Delete(Compound::create(TK_DELETE, value.range(), {value}));
}
};
} // namespace jit
} // namespace torch
namespace std {
template <typename T>
struct iterator_traits<torch::jit::ListIterator<T>>
: std::iterator_traits<torch::jit::TreeList::const_iterator> {};
} // namespace std