pytorch/c10/core/impl/PyInterpreter.cpp
Nikolay Korovaiko fd68b0931f sym_numel (#82374)
### Description
This PR makes `numel` symint-aware similar to `sym_sizes()` and `sym_strides()`. Similar to https://github.com/pytorch/pytorch/pull/81300 . This PR is the part of a bigger project to support dynamic_shapes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82374
Approved by: https://github.com/ezyang
2022-08-03 06:33:45 +00:00

102 lines
3.1 KiB
C++

#include <c10/core/SymIntArrayRef.h>
#include <c10/core/TensorImpl.h>
#include <c10/core/impl/PyInterpreter.h>
namespace c10 {
namespace impl {
static std::string noop_name_fn(const PyInterpreter*) {
return "<unloaded interpreter>";
}
static void noop_decref_fn(const PyInterpreter*, PyObject*, bool) {
// no-op
}
static c10::intrusive_ptr<TensorImpl> noop_detach_fn(
const PyInterpreter*,
const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to detach (shallow_copy_and_detach) Tensor with nontrivial PyObject after corresponding interpreter died");
}
static void noop_dispatch_fn(
const PyInterpreter*,
const c10::OperatorHandle& op,
torch::jit::Stack* stack) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to dispatch (__torch_dispatch__) an operator on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static bool noop_is_contiguous_fn(const PyInterpreter*, const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `is_contiguous` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static c10::Device noop_device_fn(const PyInterpreter*, const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `device` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static int64_t noop_dim_fn(const PyInterpreter*, const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `dim` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static c10::IntArrayRef noop_strides_fn(
const PyInterpreter*,
const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `strides` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static c10::IntArrayRef noop_sizes_fn(const PyInterpreter*, const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `sizes` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static c10::SymIntArrayRef noop_sym_sizes_fn(
const PyInterpreter*,
const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `sym_sizes` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static c10::Layout noop_layout_fn(const PyInterpreter*, const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `layout` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
static c10::SymInt noop_sym_numel_fn(const PyInterpreter*, const TensorImpl*) {
TORCH_INTERNAL_ASSERT(
0,
"attempted to call `sym_numel` on Tensor with nontrivial PyObject after corresponding interpreter died");
}
void PyInterpreter::disarm() noexcept {
name_fn_ = &noop_name_fn;
decref_fn_ = &noop_decref_fn;
detach_fn_ = &noop_detach_fn;
dispatch_fn_ = &noop_dispatch_fn;
is_contiguous_fn_ = &noop_is_contiguous_fn;
device_fn_ = &noop_device_fn;
dim_fn_ = &noop_dim_fn;
strides_fn_ = &noop_strides_fn;
sizes_fn_ = &noop_sizes_fn;
sym_sizes_fn_ = &noop_sym_sizes_fn;
layout_fn_ = &noop_layout_fn;
sym_numel_fn_ = &noop_sym_numel_fn;
}
} // namespace impl
} // namespace c10