mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This PR is doing a few interrelated things, all of which are necessary to get correctness. Read the comment in torch/fx/experimental/proxy_tensor.py for the high level overview. Let's break down the parts of this PR: * Bug fix where `enable_torch_dispatch_mode` with `None` doesn't work. This make `enable_torch_dispatch_mode(current_mode.inner)` work which is the basis for how we temporarily disable fake tensor mode. * Bug fix for when fake tensor mode is combined with a non-mode tensor subclass. This actually could be ablated from this PR but it affects where the logic for allowing non fake tensor inputs with lift goes, so it's all in here in one go. There are some relevant tests for the fix in fake tensor, but it turns out I didn't need this because I'm always using proxy tensors as a mode (which ensures the ordering is right.) * New `lift_fresh` view operator. Note that like lift, we have to manually write the functionalize kernel for these functions. * The actual change, which is to save constants when we see them in the proxy tensor mode, and then propagate them as we go (because otherwise you'll handle mutations on constants incorrectly--see test.) This is mildly BC-breaking if anyone was previously interposing on at::lift, but this operator was relatively new and I checked functorch which has no explicit reference to lift. So I think it should not be too disruptive. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/81192 Approved by: https://github.com/samdow, https://github.com/bdhirsh
1263 lines
41 KiB
Python
1263 lines
41 KiB
Python
# Generates Python bindings for ATen functions
|
|
#
|
|
# The bindings are generated as methods on python_variable or functions on the
|
|
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._sparse or torch._C._special objects.
|
|
#
|
|
|
|
# Code tries to stick to the following rules:
|
|
#
|
|
# - templates should be colocated with the functions that use them.
|
|
# no templates are currently shared between functions, but if that
|
|
# happens, maybe put the template with the first one
|
|
#
|
|
# - don't use environment dictionaries when calling template.substitute().
|
|
# pass named arguments directly for everything, otherwise it's much too
|
|
# hard to track what's actually being used and by who
|
|
#
|
|
# - colocate any new hacks/adjustments with existing ones of the same kind.
|
|
# ideally in a data structure rather than code if possible. See e.g.
|
|
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
|
|
#
|
|
# - similarly, conversions from one format to another should ideally happen
|
|
# all at once in a single place.
|
|
#
|
|
# - no nontrivial nested functions. couple-liners are ok but please no more.
|
|
# especially avoid functions that read/write outer variables defined far away.
|
|
#
|
|
# - raise RuntimeError instead of asserting, and put as much
|
|
# information as is available into the message. I.e. no need to
|
|
# plumb in new params whose only purpose is to fill out an error
|
|
# message, but use what's there
|
|
#
|
|
|
|
import itertools
|
|
import re
|
|
from collections import defaultdict
|
|
|
|
from typing import Callable, Dict, List, Optional, Sequence, Set, Tuple
|
|
|
|
import yaml
|
|
from torchgen.api import cpp
|
|
from torchgen.api.python import (
|
|
arg_parser_output_exprs,
|
|
argument_type_str,
|
|
cpp_dispatch_exprs,
|
|
cpp_dispatch_target,
|
|
dispatch_lambda_args,
|
|
dispatch_lambda_exprs,
|
|
dispatch_lambda_return_str,
|
|
has_tensor_options,
|
|
namedtuple_fieldnames,
|
|
PythonArgument,
|
|
PythonSignature,
|
|
PythonSignatureDeprecated,
|
|
PythonSignatureGroup,
|
|
PythonSignatureNativeFunctionPair,
|
|
signature,
|
|
)
|
|
from torchgen.api.types import CppSignatureGroup
|
|
|
|
from torchgen.code_template import CodeTemplate
|
|
from torchgen.context import with_native_function
|
|
from torchgen.gen import cpp_string, parse_native_yaml, parse_tags_yaml
|
|
from torchgen.model import Argument, BaseOperatorName, NativeFunction, Type, Variant
|
|
from torchgen.utils import FileManager, split_name_params, YamlLoader
|
|
|
|
from .gen_trace_type import should_trace
|
|
|
|
#
|
|
# declarations blocklist
|
|
# We skip codegen for these functions, for various reasons.
|
|
# Future PRs will categorize this list and eliminate or hoist
|
|
# them out of eager-only codegen.
|
|
# See https://github.com/pytorch/pytorch/issues/30788
|
|
#
|
|
|
|
# These functions require manual Python bindings or are not exposed to Python
|
|
_SKIP_PYTHON_BINDINGS = [
|
|
"alias",
|
|
"contiguous",
|
|
"is_cuda",
|
|
"is_sparse",
|
|
"is_sparse_csr",
|
|
"size",
|
|
"stride",
|
|
".*_backward",
|
|
".*_backward_(out|input|weight|bias)",
|
|
".*_forward",
|
|
".*_forward_out",
|
|
".*_jvp",
|
|
"_unsafe_view",
|
|
"tensor",
|
|
"_?sparse_(coo|compressed|csr|csc|bsr|bsc)_tensor.*",
|
|
"_arange.*",
|
|
"_range.*",
|
|
"linspace.*",
|
|
"logspace.*",
|
|
"_sparse_add_out",
|
|
"_sparse_div.*",
|
|
"_sparse_mul.*",
|
|
"_sparse_sub.*",
|
|
"_sparse_dense_add_out",
|
|
"index",
|
|
"index_out",
|
|
"unique_dim_consecutive",
|
|
"_cumsum.*",
|
|
"_cumprod.*",
|
|
"_sum.*",
|
|
"_prod.*",
|
|
"_th_.*",
|
|
"_thnn_.*",
|
|
"arange.*",
|
|
"range.*",
|
|
"_solve.*",
|
|
"_inverse.*",
|
|
"full(_out)?",
|
|
"_cholesky.*",
|
|
"_triangular_solve.*",
|
|
"_qr.*",
|
|
"_symeig.*",
|
|
"_svd.*",
|
|
"slice",
|
|
"randint(_out)?",
|
|
"item",
|
|
"_local_scalar_dense",
|
|
"to",
|
|
"_to_copy",
|
|
"copy_sparse_to_sparse_",
|
|
"copy_",
|
|
"numpy_T",
|
|
"matrix_H",
|
|
"mT",
|
|
"mH", # these need to be an attributes in Python, not functions
|
|
"nonzero(_(out|numpy))?",
|
|
"set_data",
|
|
".*_overrideable", # overrideable functions for backend extension
|
|
"data",
|
|
"is_leaf",
|
|
"output_nr",
|
|
"_version",
|
|
"requires_grad_",
|
|
"retains_grad",
|
|
"set_",
|
|
"_fw_primal",
|
|
"fake_quantize_per_tensor_affine_cachemask",
|
|
"fake_quantize_per_channel_affine_cachemask",
|
|
"_new_zeros_with_same_feature_meta",
|
|
"_has_same_storage_numel", # used for forward AD internals
|
|
"_reshape_alias",
|
|
"replace_", # only used by the functionalization pass, doesn't need to be exposed to python
|
|
"copy", # only used by the functionalization pass
|
|
"fill.Tensor", # only used by the functionalization pass
|
|
"fill.Scalar", # only used by the functionalization pass
|
|
"lift.*",
|
|
"normal_functional", # only used by the functionalization pas
|
|
]
|
|
|
|
SKIP_PYTHON_BINDINGS = list(
|
|
map(lambda pattern: re.compile(rf"^{pattern}$"), _SKIP_PYTHON_BINDINGS)
|
|
)
|
|
|
|
# These function signatures are not exposed to Python. Note that this signature
|
|
# list does not support regex.
|
|
SKIP_PYTHON_BINDINGS_SIGNATURES = [
|
|
"add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
|
|
"add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
|
|
"sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
|
|
"sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
|
|
"mul.Scalar(Tensor self, Scalar other) -> Tensor",
|
|
"mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
|
|
"div.Scalar(Tensor self, Scalar other) -> Tensor",
|
|
"div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
|
|
]
|
|
|
|
|
|
@with_native_function
|
|
def should_generate_py_binding(f: NativeFunction) -> bool:
|
|
# So far, all NativeFunctions that are entirely code-generated do not get python bindings.
|
|
if "generated" in f.tags:
|
|
return False
|
|
name = cpp.name(f.func)
|
|
for skip_regex in SKIP_PYTHON_BINDINGS:
|
|
if skip_regex.match(name):
|
|
return False
|
|
|
|
signature = str(f.func)
|
|
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
|
|
if pattern == signature:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def get_pycname(name: BaseOperatorName) -> str:
|
|
return f"THPVariable_{name}"
|
|
|
|
|
|
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
|
|
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
|
|
|
|
|
|
def is_py_variable_method(f: NativeFunction) -> bool:
|
|
return f.python_module is None and Variant.method in f.variants
|
|
|
|
|
|
def is_py_torch_function(f: NativeFunction) -> bool:
|
|
return f.python_module is None and Variant.function in f.variants
|
|
|
|
|
|
def is_py_nn_function(f: NativeFunction) -> bool:
|
|
return f.python_module == "nn"
|
|
|
|
|
|
def is_py_fft_function(f: NativeFunction) -> bool:
|
|
return f.python_module == "fft"
|
|
|
|
|
|
def is_py_linalg_function(f: NativeFunction) -> bool:
|
|
return f.python_module == "linalg"
|
|
|
|
|
|
def is_py_sparse_function(f: NativeFunction) -> bool:
|
|
return f.python_module == "sparse"
|
|
|
|
|
|
def is_py_special_function(f: NativeFunction) -> bool:
|
|
return f.python_module == "special"
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Main Function
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
def gen(
|
|
out: str,
|
|
native_yaml_path: str,
|
|
tags_yaml_path: str,
|
|
deprecated_yaml_path: str,
|
|
template_path: str,
|
|
) -> None:
|
|
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
|
native_functions = parse_native_yaml(
|
|
native_yaml_path, tags_yaml_path
|
|
).native_functions
|
|
native_functions = list(filter(should_generate_py_binding, native_functions))
|
|
|
|
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
|
|
create_python_bindings(
|
|
fm,
|
|
methods,
|
|
is_py_variable_method,
|
|
None,
|
|
"python_variable_methods.cpp",
|
|
method=True,
|
|
)
|
|
|
|
# NOTE: num_shards here must be synced with gatherTorchFunctions in
|
|
# torch/csrc/autograd/python_torch_functions_manual.cpp
|
|
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
|
|
create_python_bindings_sharded(
|
|
fm,
|
|
functions,
|
|
is_py_torch_function,
|
|
"torch",
|
|
"python_torch_functions.cpp",
|
|
method=False,
|
|
num_shards=3,
|
|
)
|
|
|
|
create_python_bindings(
|
|
fm,
|
|
functions,
|
|
is_py_nn_function,
|
|
"torch.nn",
|
|
"python_nn_functions.cpp",
|
|
method=False,
|
|
)
|
|
|
|
create_python_bindings(
|
|
fm,
|
|
functions,
|
|
is_py_fft_function,
|
|
"torch.fft",
|
|
"python_fft_functions.cpp",
|
|
method=False,
|
|
)
|
|
|
|
create_python_bindings(
|
|
fm,
|
|
functions,
|
|
is_py_linalg_function,
|
|
"torch.linalg",
|
|
"python_linalg_functions.cpp",
|
|
method=False,
|
|
)
|
|
|
|
create_python_bindings(
|
|
fm,
|
|
functions,
|
|
is_py_sparse_function,
|
|
"torch.sparse",
|
|
"python_sparse_functions.cpp",
|
|
method=False,
|
|
)
|
|
|
|
create_python_bindings(
|
|
fm,
|
|
functions,
|
|
is_py_special_function,
|
|
"torch.special",
|
|
"python_special_functions.cpp",
|
|
method=False,
|
|
)
|
|
|
|
# Currently, we only use `functions` to generate `return_types` bindings.
|
|
# All methods which return namedtuple have function variant at this point.
|
|
# If any method only operator with namedtuple is added in the future,
|
|
# we will have to address that.
|
|
create_python_return_type_bindings(
|
|
fm, functions, lambda fn: True, "python_return_types.cpp"
|
|
)
|
|
|
|
valid_tags = parse_tags_yaml(tags_yaml_path)
|
|
|
|
def gen_tags_enum() -> Dict[str, str]:
|
|
return {
|
|
"enum_of_valid_tags": (
|
|
"".join([f'\n.value("{tag}", at::Tag::{tag})' for tag in valid_tags])
|
|
)
|
|
}
|
|
|
|
fm.write("python_enum_tag.cpp", gen_tags_enum)
|
|
|
|
|
|
def group_filter_overloads(
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
pred: Callable[[NativeFunction], bool],
|
|
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
|
|
grouped: Dict[
|
|
BaseOperatorName, List[PythonSignatureNativeFunctionPair]
|
|
] = defaultdict(list)
|
|
for pair in pairs:
|
|
if pred(pair.function):
|
|
grouped[pair.function.func.name.name].append(pair)
|
|
return grouped
|
|
|
|
|
|
def create_python_bindings(
|
|
fm: FileManager,
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
pred: Callable[[NativeFunction], bool],
|
|
module: Optional[str],
|
|
filename: str,
|
|
*,
|
|
method: bool,
|
|
) -> None:
|
|
"""Generates Python bindings to ATen functions"""
|
|
py_methods: List[str] = []
|
|
ops_headers: List[str] = []
|
|
py_method_defs: List[str] = []
|
|
py_forwards: List[str] = []
|
|
|
|
grouped = group_filter_overloads(pairs, pred)
|
|
|
|
for name in sorted(grouped.keys(), key=lambda x: str(x)):
|
|
overloads = grouped[name]
|
|
py_methods.append(method_impl(name, module, overloads, method=method))
|
|
py_method_defs.append(method_def(name, module, overloads, method=method))
|
|
py_forwards.extend(forward_decls(name, overloads, method=method))
|
|
ops_headers.append(f"#include <ATen/ops/{name.base}.h>")
|
|
|
|
fm.write_with_template(
|
|
filename,
|
|
filename,
|
|
lambda: {
|
|
"generated_comment": "@" + f"generated from {fm.template_dir}/{filename}",
|
|
"ops_headers": ops_headers,
|
|
"py_forwards": py_forwards,
|
|
"py_methods": py_methods,
|
|
"py_method_defs": py_method_defs,
|
|
},
|
|
)
|
|
|
|
|
|
def create_python_return_type_bindings(
|
|
fm: FileManager,
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
pred: Callable[[NativeFunction], bool],
|
|
filename: str,
|
|
) -> None:
|
|
"""
|
|
Generate function to initialize and return named tuple for native functions
|
|
which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
|
|
"""
|
|
py_return_types_definition: List[str] = []
|
|
py_return_types_map: List[str] = []
|
|
|
|
grouped = group_filter_overloads(pairs, pred)
|
|
|
|
for name in sorted(grouped.keys(), key=lambda x: str(x)):
|
|
overloads = grouped[name]
|
|
definitions, map_entries = generate_return_type_definition_and_map_entry(
|
|
overloads
|
|
)
|
|
py_return_types_definition.append(
|
|
"" if not definitions else "\n".join(definitions)
|
|
)
|
|
py_return_types_map.append("" if not map_entries else "\n".join(map_entries))
|
|
|
|
fm.write_with_template(
|
|
filename,
|
|
filename,
|
|
lambda: {
|
|
"generated_comment": "@" + f"generated from {fm.template_dir}/{filename}",
|
|
"py_return_types": py_return_types_definition,
|
|
"py_return_types_map": py_return_types_map,
|
|
},
|
|
)
|
|
|
|
|
|
def create_python_bindings_sharded(
|
|
fm: FileManager,
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
pred: Callable[[NativeFunction], bool],
|
|
module: Optional[str],
|
|
filename: str,
|
|
*,
|
|
method: bool,
|
|
num_shards: int,
|
|
) -> None:
|
|
"""Generates Python bindings to ATen functions"""
|
|
grouped = group_filter_overloads(pairs, pred)
|
|
|
|
def key_func(
|
|
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
|
|
) -> str:
|
|
return kv[0].base
|
|
|
|
def env_func(
|
|
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
|
|
) -> Dict[str, List[str]]:
|
|
name, fn_pairs = kv
|
|
return {
|
|
"ops_headers": [f"#include <ATen/ops/{name.base}.h>"],
|
|
"py_forwards": list(forward_decls(name, fn_pairs, method=method)),
|
|
"py_methods": [method_impl(name, module, fn_pairs, method=method)],
|
|
"py_method_defs": [method_def(name, module, fn_pairs, method=method)],
|
|
}
|
|
|
|
fm.write_sharded(
|
|
filename,
|
|
grouped.items(),
|
|
base_env={
|
|
"generated_comment": "@" + f"generated from {fm.template_dir}/{filename}",
|
|
},
|
|
key_fn=key_func,
|
|
env_callable=env_func,
|
|
num_shards=num_shards,
|
|
sharded_keys={"ops_headers", "py_forwards", "py_methods", "py_method_defs"},
|
|
)
|
|
|
|
|
|
def load_signatures(
|
|
native_functions: List[NativeFunction],
|
|
deprecated_yaml_path: str,
|
|
*,
|
|
method: bool,
|
|
skip_deprecated: bool = False,
|
|
pyi: bool = False,
|
|
) -> Sequence[PythonSignatureNativeFunctionPair]:
|
|
@with_native_function
|
|
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
|
|
return PythonSignatureNativeFunctionPair(
|
|
signature=signature(f, method=method, pyi=pyi),
|
|
function=f,
|
|
)
|
|
|
|
pairs = list(map(gen_signature_pairs, native_functions))
|
|
deprecated = load_deprecated_signatures(
|
|
pairs, deprecated_yaml_path, method=method, pyi=pyi
|
|
)
|
|
return pairs if skip_deprecated else pairs + deprecated
|
|
|
|
|
|
def load_deprecated_signatures(
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
deprecated_yaml_path: str,
|
|
*,
|
|
method: bool,
|
|
pyi: bool,
|
|
) -> List[PythonSignatureNativeFunctionPair]:
|
|
# The deprecated.yaml doesn't have complete type information, we need
|
|
# find and leverage the original ATen signature (to which it delegates
|
|
# the call) to generate the full python signature.
|
|
# We join the deprecated and the original signatures using type-only form.
|
|
|
|
# native function -> type-only signature
|
|
@with_native_function
|
|
def signature_original(f: NativeFunction) -> str:
|
|
# remove inplace suffix but keep outplace suffix
|
|
opname = str(f.func.name.name.base)
|
|
if f.func.is_out_fn():
|
|
opname += "_out"
|
|
if f.func.name.name.inplace and pyi:
|
|
opname += "_"
|
|
args = CppSignatureGroup.from_native_function(
|
|
f, method=False
|
|
).signature.arguments()
|
|
# Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
|
|
types = ", ".join(
|
|
argument_type_str(a.argument.type)
|
|
for a in args
|
|
if isinstance(a.argument, Argument)
|
|
)
|
|
return f"{opname}({types})"
|
|
|
|
# deprecated -> type-only native signature (according to the call order)
|
|
def signature_deprecated(
|
|
opname: str, params: List[str], call_args: List[str]
|
|
) -> str:
|
|
# create a mapping of parameter name to parameter type
|
|
types: Dict[str, str] = {}
|
|
for param in params:
|
|
if param == "*":
|
|
continue
|
|
type, name = param.split(" ")
|
|
types[name] = type
|
|
# if the name in the call is not in the parameter list, assume it's
|
|
# a literal Scalar
|
|
rearranged_types = ", ".join(types.get(arg, "Scalar") for arg in call_args)
|
|
return f"{opname}({rearranged_types})"
|
|
|
|
# group the original ATen signatures by type-only signature
|
|
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
|
|
for pair in pairs:
|
|
grouped[signature_original(pair.function)].append(pair)
|
|
|
|
# find matching original signatures for each deprecated signature
|
|
results: List[PythonSignatureNativeFunctionPair] = []
|
|
|
|
with open(deprecated_yaml_path, "r") as f:
|
|
deprecated_defs = yaml.load(f, Loader=YamlLoader)
|
|
|
|
for deprecated in deprecated_defs:
|
|
_, params = split_name_params(deprecated["name"])
|
|
aten_name, call_args = split_name_params(deprecated["aten"])
|
|
|
|
for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
|
|
# It uses the types from the original ATen declaration, but the
|
|
# ordering and parameter names from the deprecated overload. Any
|
|
# default parameter values from the original ATen declaration are
|
|
# ignored.
|
|
# Deprecated signature might reorder input_args and input_kwargs,
|
|
# but never changes output_args nor TensorOptions (if any?),
|
|
# so here we only look into these two types of args.
|
|
python_sig = pair.signature
|
|
src_args: Dict[str, PythonArgument] = {
|
|
a.name: PythonArgument(
|
|
name=a.name,
|
|
type=a.type,
|
|
default=None,
|
|
default_init=None,
|
|
)
|
|
for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)
|
|
}
|
|
|
|
args: List[str] = []
|
|
input_args: List[PythonArgument] = []
|
|
input_kwargs: List[PythonArgument] = []
|
|
|
|
kwarg_only = False
|
|
for param in params:
|
|
if param == "*":
|
|
kwarg_only = True
|
|
continue
|
|
_, param_name = param.split(" ")
|
|
args.append(param_name)
|
|
|
|
if param_name not in src_args:
|
|
# output argument
|
|
continue
|
|
|
|
if not kwarg_only:
|
|
if not method or param_name != "self":
|
|
input_args.append(src_args[param_name])
|
|
else:
|
|
input_kwargs.append(src_args[param_name])
|
|
|
|
results.append(
|
|
PythonSignatureNativeFunctionPair(
|
|
signature=PythonSignatureDeprecated(
|
|
name=python_sig.name,
|
|
input_args=tuple(input_args),
|
|
input_kwargs=tuple(input_kwargs),
|
|
output_args=python_sig.output_args,
|
|
tensor_options_args=python_sig.tensor_options_args,
|
|
method=python_sig.method,
|
|
deprecated_args_names=tuple(args),
|
|
deprecated_args_exprs=tuple(call_args),
|
|
returns=python_sig.returns,
|
|
),
|
|
function=pair.function,
|
|
)
|
|
)
|
|
|
|
return results
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Named Tuple Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
@with_native_function
|
|
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
|
|
name = cpp.name(f.func)
|
|
fieldnames = namedtuple_fieldnames(f.func.returns)
|
|
return "_".join([name] + fieldnames)
|
|
|
|
|
|
def emit_namedtuple_call(
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
) -> Tuple[List[str], Dict[str, str]]:
|
|
"""
|
|
Generate block of named tuple type def inits, and add typeref snippets
|
|
to declarations that use them
|
|
"""
|
|
typenames: Dict[
|
|
str, str
|
|
] = {} # map from unique name + field name lists to typedef name
|
|
typedefs: List[str] = [] # typedef declarations and init code
|
|
|
|
for overload in overloads:
|
|
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
|
|
if not fieldnames:
|
|
continue
|
|
|
|
name = cpp.name(overload.function.func) # use @with_native_function?
|
|
tn_key = gen_namedtuple_typename_key(overload.function)
|
|
typename = typenames.get(tn_key)
|
|
if typename is None:
|
|
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
|
|
typenames[tn_key] = typename
|
|
typedefs.append(
|
|
f"""\
|
|
static PyTypeObject* {typename} = get_namedtuple("{name}");"""
|
|
)
|
|
|
|
return typedefs, typenames
|
|
|
|
|
|
def generate_return_type_definition_and_map_entry(
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
) -> Tuple[List[str], List[str]]:
|
|
"""
|
|
Generate block of function in `python_return_types.cpp` to initialize
|
|
and return named tuple for a native function which returns named tuple
|
|
and relevant entry for the map in same file.
|
|
"""
|
|
typenames: Dict[
|
|
str, str
|
|
] = {} # map from unique name + field name lists to typedef name
|
|
definitions: List[str] = [] # function defintion to register the typedef
|
|
map_entries: List[
|
|
str
|
|
] = [] # C++ map entry of <function_name, function creates it namedtuple>
|
|
|
|
for overload in overloads:
|
|
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
|
|
if not fieldnames:
|
|
continue
|
|
|
|
fields = ", ".join(f'{{"{fn}", ""}}' for fn in fieldnames)
|
|
|
|
name = cpp.name(overload.function.func) # use @with_native_function?
|
|
tn_key = gen_namedtuple_typename_key(overload.function)
|
|
typename = typenames.get(tn_key)
|
|
|
|
if typename is None:
|
|
typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
|
|
typenames[tn_key] = typename
|
|
definitions.append(
|
|
f"""\
|
|
PyTypeObject* get_{name}_namedtuple() {{
|
|
static PyStructSequence_Field NamedTuple_fields[] = {{ {fields}, {{nullptr}} }};
|
|
static PyTypeObject {typename};
|
|
static bool is_initialized = false;
|
|
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
|
|
if (!is_initialized) {{
|
|
PyStructSequence_InitType(&{typename}, &desc);
|
|
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
|
|
is_initialized = true;
|
|
}}
|
|
return &{typename};
|
|
}}
|
|
"""
|
|
)
|
|
map_entries.append(f'{{"{name}", get_{name}_namedtuple()}}, ')
|
|
|
|
return definitions, map_entries
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Method Impl Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
# python binding for all overloads of a particular function/method
|
|
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(
|
|
r"""\
|
|
// ${name}
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
|
{
|
|
${method_header}
|
|
static PythonArgParser parser({
|
|
${signatures}
|
|
}, /*traceable=*/${traceable});
|
|
|
|
ParsedArgs<${max_args}> parsed_args;
|
|
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
|
${check_has_torch_function}
|
|
switch (_r.idx) {
|
|
${dispatch}
|
|
}
|
|
${method_footer}
|
|
}
|
|
|
|
"""
|
|
)
|
|
|
|
# handler for a single parsed signature - may be a single overload or
|
|
# a pair of overloads that whose signatures only differ in output params
|
|
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
|
|
PY_VARIABLE_CASE = CodeTemplate(
|
|
"""\
|
|
case ${overload_index}: {
|
|
${body}
|
|
}
|
|
"""
|
|
)
|
|
|
|
# python binding for single-overload function/method
|
|
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate(
|
|
"""\
|
|
// ${name}
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
|
{
|
|
${method_header}
|
|
static PythonArgParser parser({
|
|
${signatures}
|
|
}, /*traceable=*/${traceable});
|
|
|
|
ParsedArgs<${max_args}> parsed_args;
|
|
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
|
${check_has_torch_function}
|
|
${dispatch}
|
|
${method_footer}
|
|
}
|
|
|
|
"""
|
|
)
|
|
|
|
# python binding for a method with no args, shortcuts parsing
|
|
PY_VARIABLE_METHOD_NOARGS = CodeTemplate(
|
|
"""\
|
|
// ${name}
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
|
|
{
|
|
${method_header}
|
|
${check_has_torch_function}
|
|
${dispatch}
|
|
${method_footer}
|
|
}
|
|
|
|
"""
|
|
)
|
|
|
|
|
|
def method_impl(
|
|
name: BaseOperatorName,
|
|
module: Optional[str],
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
*,
|
|
method: bool,
|
|
) -> str:
|
|
"""
|
|
Generate a python binding for all overloads of an op.
|
|
"""
|
|
pycname = get_pycname(name)
|
|
noarg = is_noarg(overloads)
|
|
namedtuple_inits, namedtuple_typenames = emit_namedtuple_call(overloads)
|
|
|
|
method_header = ["HANDLE_TH_ERRORS"]
|
|
method_header += namedtuple_inits
|
|
method_header += (
|
|
["const Tensor& self = THPVariable_Unpack(self_);"] if method else []
|
|
)
|
|
|
|
method_footer = ([] if noarg else ["Py_RETURN_NONE;"]) + ["END_HANDLE_TH_ERRORS"]
|
|
|
|
traceable = "true" if all(should_trace(o.function) for o in overloads) else "false"
|
|
|
|
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
|
|
is_singleton = len(grouped_overloads) == 1
|
|
signatures: List[str] = []
|
|
dispatch: List[str] = []
|
|
for overload_index, overload in enumerate(grouped_overloads):
|
|
signature = overload.signature.signature_str()
|
|
signatures.append(f"{cpp_string(str(signature))},")
|
|
dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
|
|
dispatch.append(
|
|
PY_VARIABLE_CASE.substitute(
|
|
overload_index=overload_index, body=dispatch_body
|
|
)
|
|
if not is_singleton
|
|
else dispatch_body
|
|
)
|
|
|
|
if noarg:
|
|
template = PY_VARIABLE_METHOD_NOARGS
|
|
elif is_singleton:
|
|
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
|
|
else:
|
|
template = PY_VARIABLE_METHOD_VARARGS
|
|
|
|
return template.substitute(
|
|
name=name,
|
|
pycname=pycname,
|
|
method_header=method_header,
|
|
max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
|
|
signatures=signatures,
|
|
traceable=traceable,
|
|
check_has_torch_function=gen_has_torch_function_check(
|
|
name=name,
|
|
module=module,
|
|
noarg=noarg,
|
|
method=method,
|
|
),
|
|
dispatch=dispatch,
|
|
method_footer=method_footer,
|
|
self_="self_" if method else "nullptr",
|
|
)
|
|
|
|
|
|
def gen_has_torch_function_check(
|
|
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
|
|
) -> str:
|
|
if noarg:
|
|
if method:
|
|
return f"""\
|
|
if(check_has_torch_function(self_)) {{
|
|
return handle_torch_function(self_, "{name}");
|
|
}}
|
|
"""
|
|
else:
|
|
return ""
|
|
|
|
self_ = "self_" if method else "nullptr"
|
|
namespace = (
|
|
{
|
|
"torch": "THPVariableFunctionsModule",
|
|
"torch.nn": "THPNNVariableFunctionsModule",
|
|
"torch.fft": "THPFFTVariableFunctionsModule",
|
|
"torch.linalg": "THPLinalgVariableFunctionsModule",
|
|
"torch.sparse": "THPSparseVariableFunctionsModule",
|
|
"torch.special": "THPSpecialVariableFunctionsModule",
|
|
}[module]
|
|
if module
|
|
else "THPVariableClass"
|
|
)
|
|
|
|
return f"""\
|
|
if(_r.has_torch_function()) {{
|
|
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
|
|
}}
|
|
"""
|
|
|
|
|
|
# handler for output/no-output overload pair
|
|
PY_VARIABLE_OUT = CodeTemplate(
|
|
"""\
|
|
if (_r.isNone(${out_idx})) {
|
|
${call_dispatch}
|
|
} else {
|
|
${call_dispatch_out}
|
|
}
|
|
"""
|
|
)
|
|
|
|
|
|
def emit_dispatch_case(
|
|
overload: PythonSignatureGroup,
|
|
namedtuple_typenames: Dict[str, str],
|
|
) -> str:
|
|
"""
|
|
Emit dispatch code for a single parsed signature. This corresponds to either
|
|
a single native function, or a pair that differ only in output params. In the
|
|
latter case, a single python signature is used for both and dispatching
|
|
switches on the presence/absence of passed output args.
|
|
"""
|
|
if overload.outplace is not None:
|
|
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
|
|
return PY_VARIABLE_OUT.substitute(
|
|
out_idx=overload.signature.output_idx(),
|
|
call_dispatch=emit_single_dispatch(
|
|
overload.signature, overload.base, namedtuple_typenames
|
|
),
|
|
call_dispatch_out=emit_single_dispatch(
|
|
overload.signature, overload.outplace, namedtuple_typenames
|
|
),
|
|
)
|
|
else:
|
|
# no-output version only
|
|
return emit_single_dispatch(
|
|
overload.signature, overload.base, namedtuple_typenames
|
|
)
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Forward Declarations Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
def forward_decls(
|
|
name: BaseOperatorName,
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
*,
|
|
method: bool,
|
|
) -> Tuple[str, ...]:
|
|
if method:
|
|
return ()
|
|
|
|
pycname = get_pycname(name)
|
|
if is_noarg(overloads):
|
|
return (
|
|
f"""\
|
|
static PyObject * {pycname}(PyObject* self_, PyObject* args);
|
|
""",
|
|
)
|
|
else:
|
|
return (
|
|
f"""\
|
|
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
|
|
""",
|
|
)
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Method Def (Binding Table Entry) Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
def method_def(
|
|
name: BaseOperatorName,
|
|
module: Optional[str],
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
*,
|
|
method: bool,
|
|
) -> str:
|
|
"""
|
|
Generate method def entry.
|
|
"""
|
|
pycname = get_pycname(name)
|
|
|
|
if is_noarg(overloads):
|
|
pyfunc_cast = ""
|
|
flags = "METH_NOARGS" if method else "METH_VARARGS | METH_KEYWORDS"
|
|
else:
|
|
pyfunc_cast = "castPyCFunctionWithKeywords"
|
|
flags = "METH_VARARGS | METH_KEYWORDS"
|
|
|
|
if module == "torch":
|
|
flags += " | METH_STATIC"
|
|
|
|
if name.dunder_method:
|
|
# PyMethodDef entry for binary op, throws not implemented error
|
|
return f"""\
|
|
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
|
|
else:
|
|
# PyMethodDef entry
|
|
return f"""\
|
|
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Overload Sorting and Grouping
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
def group_overloads(
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
) -> Sequence[PythonSignatureGroup]:
|
|
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
|
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
|
|
|
# first group by signature ignoring out arguments
|
|
for overload in overloads:
|
|
sig = overload.signature.signature_str(skip_outputs=True)
|
|
if overload.function.func.is_out_fn():
|
|
if sig in outplaces:
|
|
raise RuntimeError(
|
|
f"Found duplicated function definition:\n- {overload.function.func}.\n"
|
|
f"Existing definition:\n- {outplaces[sig].function.func}."
|
|
)
|
|
outplaces[sig] = overload
|
|
else:
|
|
if sig in bases:
|
|
raise RuntimeError(
|
|
f"Found duplicated function definition:\n- {overload.function.func}.\n"
|
|
f"Existing definition:\n- {bases[sig].function.func}."
|
|
)
|
|
bases[sig] = overload
|
|
|
|
for sig, out in outplaces.items():
|
|
if sig not in bases:
|
|
candidates: List[str] = []
|
|
for overload in overloads:
|
|
if (
|
|
str(overload.function.func.name.name)
|
|
== str(out.function.func.name.name)
|
|
and not overload.function.func.is_out_fn()
|
|
and not overload.signature.deprecated
|
|
):
|
|
candidates.append(
|
|
overload.signature.signature_str(skip_outputs=True)
|
|
)
|
|
out_sig = out.signature.signature_str()
|
|
raise RuntimeError(
|
|
f"While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. "
|
|
f"We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema "
|
|
"correctly in native_functions.yaml. We discovered the following candidate(s): \n"
|
|
+ "\n".join(f"- {candidate}" for candidate in candidates)
|
|
)
|
|
|
|
grouped: List[PythonSignatureGroup] = []
|
|
for sig, base in bases.items():
|
|
outplace = outplaces.get(sig)
|
|
grouped.append(
|
|
PythonSignatureGroup(
|
|
# prefer the signature with optional out=... arguments because it's the
|
|
# superset that can be used to parse input for both base and outplace.
|
|
signature=outplace.signature
|
|
if outplace is not None
|
|
else base.signature,
|
|
base=base.function,
|
|
outplace=outplace.function if outplace is not None else None,
|
|
)
|
|
)
|
|
|
|
return sort_overloads(grouped)
|
|
|
|
|
|
# This function declares a partial order on declarations, and sorts them according
|
|
# to its linear extension. This is necessary, because there's some ambiguity in the
|
|
# choice of overload, and we want a different order.
|
|
#
|
|
# See Note[Order of overloads matters]
|
|
#
|
|
# A few examples of ambiguous python signature pairs.
|
|
#
|
|
# All parameters have the same type, except one taking Tensor the other taking
|
|
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
|
|
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
|
|
# Therefore, same input arguments might be accepted by either python signature.
|
|
# We want to always parse the one taking Tensor first.
|
|
#
|
|
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
|
|
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
|
|
#
|
|
# If they have different number of parameters then they are not ambiguous - but
|
|
# the difference on output param can be ignored as it's optional.
|
|
#
|
|
# multiply(Tensor input, Tensor other, *, Tensor out=None)
|
|
# multiply(Tensor input, Scalar other)
|
|
#
|
|
# Both positional args and keyword-only args are considered together.
|
|
#
|
|
# subtract(Tensor other, *, Scalar alpha=1)
|
|
# subtract(Scalar other, Scalar alpha=1)
|
|
#
|
|
# A few ambiguous cases which it does NOT handle yet.
|
|
#
|
|
# If there is any difference in other parameters besides the Tensor/Scalar
|
|
# difference, then they are not considered ambiguous by this method anymore.
|
|
# However, the difference could be too trivial to disambiguate.
|
|
#
|
|
# foo(Tensor input, Scalar other, Scalar bar)
|
|
# foo(Tensor input, Tensor other, double bar)
|
|
#
|
|
# If they are taking different number of parameters then they are not considered
|
|
# ambiguous anymore, even if the difference is only on optional kwargs.
|
|
#
|
|
# foo(Scalar other, Scalar alpha=1)
|
|
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
|
|
#
|
|
|
|
|
|
def sort_overloads(
|
|
grouped_overloads: Sequence[PythonSignatureGroup],
|
|
) -> Sequence[PythonSignatureGroup]:
|
|
# NB: Smaller here means lower priority
|
|
|
|
def is_arg_smaller(t1: Type, t2: Type) -> bool:
|
|
return (
|
|
str(t1) == "Scalar"
|
|
and str(t2) == "Tensor"
|
|
or str(t1) == "Scalar?"
|
|
and str(t2) == "Tensor?"
|
|
or "Dimname" in str(t1)
|
|
and "Dimname" not in str(t2)
|
|
or
|
|
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
|
|
# discussed why it is important to prioritize int/int? over int[]
|
|
str(t1) == "int[]"
|
|
and (str(t2) == "int" or str(t2) == "int?")
|
|
or
|
|
# TensorList currently throws an error during argument parsing, that's why it needs to be
|
|
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
|
|
str(t1) == "Tensor[]"
|
|
and str(t2).find("[]") != -1
|
|
or
|
|
# Prioritize SymIntArrayRef overload over IntArrayRef
|
|
str(t1) == "int[]"
|
|
and str(t2) == "SymInt[]"
|
|
)
|
|
|
|
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
|
|
"""Returns True if s1 < s2 in the partial order."""
|
|
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
|
|
if len(args1) != len(args2):
|
|
return False
|
|
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
|
|
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
|
|
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
|
|
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
|
|
smaller_or_equal = all(
|
|
str(arg1.type) == str(arg2.type) or is_arg_smaller(arg1.type, arg2.type)
|
|
for arg1, arg2 in zip(args1, args2)
|
|
)
|
|
return smaller_or_equal and not equal
|
|
|
|
# First sort by signature
|
|
grouped_overloads = sorted(
|
|
grouped_overloads, key=lambda x: x.signature.signature_str()
|
|
)
|
|
|
|
# Construct the relation graph
|
|
larger_than: Dict[int, Set[int]] = defaultdict(set)
|
|
for i1, overload1 in enumerate(grouped_overloads):
|
|
for i2, overload2 in enumerate(grouped_overloads):
|
|
if is_smaller(overload1.signature, overload2.signature):
|
|
larger_than[i1].add(i2)
|
|
|
|
if not larger_than:
|
|
return list(grouped_overloads)
|
|
|
|
# Use a topological sort to sort overloads according to the partial order.
|
|
N = len(grouped_overloads)
|
|
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
|
|
|
|
for idx in range(N):
|
|
# The size of sorted_ids will grow to N eventually.
|
|
i = sorted_ids[idx]
|
|
for j in sorted(larger_than.keys()):
|
|
larger = larger_than[j]
|
|
larger.discard(i)
|
|
if not larger:
|
|
del larger_than[j]
|
|
sorted_ids.append(j)
|
|
|
|
return list(map(lambda x: grouped_overloads[x], sorted_ids))
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Codegen API Integration
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
def emit_single_dispatch(
|
|
ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
|
|
) -> str:
|
|
"""
|
|
Emit dispatch code for a single native function.
|
|
"""
|
|
|
|
@with_native_function
|
|
def go(f: NativeFunction) -> str:
|
|
# header comments
|
|
deprecated = "[deprecated] " if ps.deprecated else ""
|
|
schema_comment = f"// {deprecated}aten::{f.func}"
|
|
|
|
# dispatch lambda signature
|
|
name = cpp.name(f.func)
|
|
lambda_formals = ", ".join(
|
|
map(lambda a: f"{a.type_str} {a.name}", dispatch_lambda_args(ps, f))
|
|
)
|
|
lambda_return = dispatch_lambda_return_str(f)
|
|
|
|
# dispatch lambda body
|
|
dispatch_callee = cpp_dispatch_target(f)
|
|
dispatch_args = ", ".join(cpp_dispatch_exprs(f, python_signature=ps))
|
|
|
|
# from arg parser outputs to dispatch lambda arguments
|
|
parser_outputs = arg_parser_output_exprs(ps, f)
|
|
lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
|
|
inits = "\n".join(lambda_arg_exprs.inits)
|
|
lambda_args = ", ".join(lambda_arg_exprs.exprs)
|
|
|
|
# scatter fields
|
|
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
|
|
# solution for enabling the 'requires_grad' argument for tensor methods
|
|
# new_full, new_empty, and new_zeros. A much better but more difficult to
|
|
# implement solution involves refactoring according to Ed's description here:
|
|
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
|
|
need_set_requires_grad = ps.tensor_options_args and (
|
|
not has_tensor_options(f)
|
|
or (ps.method and ("requires_grad" in parser_outputs))
|
|
)
|
|
set_requires_grad = (
|
|
f'.set_requires_grad({parser_outputs["requires_grad"].expr})'
|
|
if need_set_requires_grad
|
|
else ""
|
|
)
|
|
|
|
if lambda_return == "void":
|
|
return f"""\
|
|
{schema_comment}
|
|
{inits}
|
|
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
|
pybind11::gil_scoped_release no_gil;
|
|
{dispatch_callee}({dispatch_args});
|
|
}};
|
|
dispatch_{name}({lambda_args}){set_requires_grad};
|
|
Py_RETURN_NONE;
|
|
"""
|
|
else:
|
|
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
|
|
namedtuple_typeref = f"{typename}, " if typename is not None else ""
|
|
return f"""\
|
|
{schema_comment}
|
|
{inits}
|
|
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
|
pybind11::gil_scoped_release no_gil;
|
|
return {dispatch_callee}({dispatch_args});
|
|
}};
|
|
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
|
|
"""
|
|
|
|
return go(f)
|