pytorch/caffe2/python/operator_test/adagrad_test.py
Pieter Noordhuis d4db1b90a1 Resuppress adagrad health checks
Summary:
Commit 479e4ce5 didn't end up solving the health checks firing and
they are likely still caused by the remaining `assume` calls.
Closes https://github.com/caffe2/caffe2/pull/1625

Differential Revision: D6573036

Pulled By: pietern

fbshipit-source-id: eeb21bdd61dca0a632eb1ba9e529177ac2569bfd
2017-12-14 16:34:41 -08:00

301 lines
11 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import functools
import hypothesis
from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
class TestAdagrad(hu.HypothesisTestCase):
@staticmethod
def ref_adagrad(param_in, mom_in, grad, lr, epsilon, using_fp16=False):
mom_in_f32 = mom_in
param_in_f32 = param_in
if(using_fp16):
mom_in_f32 = mom_in.astype(np.float32)
param_in_f32 = param_in.astype(np.float32)
mom_out = mom_in_f32 + np.square(grad)
grad_adj = lr * grad / (np.sqrt(mom_out) + epsilon)
param_out = param_in_f32 + grad_adj
if(using_fp16):
return (param_out.astype(np.float16), mom_out.astype(np.float16))
else:
return (param_out.astype(np.float32), mom_out.astype(np.float32))
@staticmethod
def ref_row_wise_adagrad(param_in, mom_in, grad, lr, epsilon):
mom_out = mom_in + np.mean(np.square(grad))
grad_adj = lr * grad / (np.sqrt(mom_out) + epsilon)
param_out = param_in + grad_adj
return (param_out, mom_out)
@given(inputs=hu.tensors(n=3),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs)
def test_adagrad(self, inputs, lr, epsilon, gc, dc):
param, momentum, grad = inputs
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Adagrad",
["param", "momentum", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, momentum, grad, lr],
functools.partial(self.ref_adagrad, epsilon=epsilon))
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(inputs=hu.tensors(n=3),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs)
def test_sparse_adagrad(self, inputs, lr, epsilon,
data_strategy, gc, dc):
param, momentum, grad = inputs
momentum = np.abs(momentum)
lr = np.array([lr], dtype=np.float32)
# Create an indexing array containing values that are lists of indices,
# which index into grad
indices = data_strategy.draw(
hu.tensor(dtype=np.int64,
elements=st.sampled_from(np.arange(grad.shape[0]))),
)
hypothesis.note('indices.shape: %s' % str(indices.shape))
# For now, the indices must be unique
hypothesis.assume(np.array_equal(np.unique(indices.flatten()),
np.sort(indices.flatten())))
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseAdagrad",
["param", "momentum", "indices", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc)
def ref_sparse(param, momentum, indices, grad, lr, ref_using_fp16=False):
param_out = np.copy(param)
momentum_out = np.copy(momentum)
for i, index in enumerate(indices):
param_out[index], momentum_out[index] = self.ref_adagrad(
param[index],
momentum[index],
grad[i],
lr,
epsilon,
using_fp16=ref_using_fp16
)
return (param_out, momentum_out)
ref_using_fp16_values = [False]
if dc == hu.gpu_do:
ref_using_fp16_values.append(True)
for ref_using_fp16 in ref_using_fp16_values:
if(ref_using_fp16):
print('test_sparse_adagrad with half precision embedding')
momentum_i = momentum.astype(np.float16)
param_i = param.astype(np.float16)
else:
print('test_sparse_adagrad with full precision embedding')
momentum_i = momentum.astype(np.float32)
param_i = param.astype(np.float32)
self.assertReferenceChecks(
gc, op, [param_i, momentum_i, indices, grad, lr, ref_using_fp16],
ref_sparse
)
@given(inputs=hu.tensors(n=2),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs)
def test_sparse_adagrad_empty(self, inputs, lr, epsilon,
data_strategy, gc, dc):
param, momentum = inputs
momentum = np.abs(momentum)
lr = np.array([lr], dtype=np.float32)
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
indices = np.empty(shape=(0,), dtype=np.int64)
hypothesis.note('indices.shape: %s' % str(indices.shape))
op = core.CreateOperator(
"SparseAdagrad",
["param", "momentum", "indices", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc)
def ref_sparse(param, momentum, indices, grad, lr):
param_out = np.copy(param)
momentum_out = np.copy(momentum)
return (param_out, momentum_out)
ref_using_fp16_values = [False]
if dc == hu.gpu_do:
ref_using_fp16_values.append(True)
for ref_using_fp16 in ref_using_fp16_values:
if(ref_using_fp16):
print('test_sparse_adagrad_empty with half precision embedding')
momentum_i = momentum.astype(np.float16)
param_i = param.astype(np.float16)
else:
print('test_sparse_adagrad_empty with full precision embedding')
momentum_i = momentum.astype(np.float32)
param_i = param.astype(np.float32)
self.assertReferenceChecks(
gc, op, [param_i, momentum_i, indices, grad, lr], ref_sparse
)
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(inputs=hu.tensors(n=2),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs)
def test_row_wise_sparse_adagrad(self, inputs, lr, epsilon,
data_strategy, gc, dc):
param, grad = inputs
lr = np.array([lr], dtype=np.float32)
# Create a 1D row-wise average sum of squared gradients tensor.
momentum = data_strategy.draw(
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
elements=hu.elements_of_type(dtype=np.float32))
)
momentum = np.abs(momentum)
# Create an indexing array containing values which index into grad
indices = data_strategy.draw(
hu.tensor(dtype=np.int64,
elements=st.sampled_from(np.arange(grad.shape[0]))),
)
# Note that unlike SparseAdagrad, RowWiseSparseAdagrad uses a moment
# tensor that is strictly 1-dimensional and equal in length to the
# first dimension of the parameters, so indices must also be
# 1-dimensional.
indices = indices.flatten()
hypothesis.note('indices.shape: %s' % str(indices.shape))
# The indices must be unique
hypothesis.assume(np.array_equal(np.unique(indices), np.sort(indices)))
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"RowWiseSparseAdagrad",
["param", "momentum", "indices", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc)
def ref_row_wise_sparse(param, momentum, indices, grad, lr):
param_out = np.copy(param)
momentum_out = np.copy(momentum)
for i, index in enumerate(indices):
param_out[index], momentum_out[index] = self.ref_row_wise_adagrad(
param[index], momentum[index], grad[i], lr, epsilon)
return (param_out, momentum_out)
self.assertReferenceChecks(
gc, op,
[param, momentum, indices, grad, lr],
ref_row_wise_sparse)
@given(inputs=hu.tensors(n=1),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs)
def test_row_wise_sparse_adagrad_empty(self, inputs, lr, epsilon,
data_strategy, gc, dc):
param = inputs[0]
lr = np.array([lr], dtype=np.float32)
momentum = data_strategy.draw(
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
elements=hu.elements_of_type(dtype=np.float32))
)
momentum = np.abs(momentum)
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
indices = np.empty(shape=(0,), dtype=np.int64)
hypothesis.note('indices.shape: %s' % str(indices.shape))
op = core.CreateOperator(
"RowWiseSparseAdagrad",
["param", "momentum", "indices", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc)
def ref_row_wise_sparse(param, momentum, indices, grad, lr):
param_out = np.copy(param)
momentum_out = np.copy(momentum)
return (param_out, momentum_out)
self.assertReferenceChecks(
gc, op,
[param, momentum, indices, grad, lr],
ref_row_wise_sparse)