mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Commit 479e4ce5 didn't end up solving the health checks firing and they are likely still caused by the remaining `assume` calls. Closes https://github.com/caffe2/caffe2/pull/1625 Differential Revision: D6573036 Pulled By: pietern fbshipit-source-id: eeb21bdd61dca0a632eb1ba9e529177ac2569bfd
301 lines
11 KiB
Python
301 lines
11 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import functools
|
|
|
|
import hypothesis
|
|
from hypothesis import given, settings, HealthCheck
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
from caffe2.python import core
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestAdagrad(hu.HypothesisTestCase):
|
|
|
|
@staticmethod
|
|
def ref_adagrad(param_in, mom_in, grad, lr, epsilon, using_fp16=False):
|
|
mom_in_f32 = mom_in
|
|
param_in_f32 = param_in
|
|
if(using_fp16):
|
|
mom_in_f32 = mom_in.astype(np.float32)
|
|
param_in_f32 = param_in.astype(np.float32)
|
|
|
|
mom_out = mom_in_f32 + np.square(grad)
|
|
grad_adj = lr * grad / (np.sqrt(mom_out) + epsilon)
|
|
param_out = param_in_f32 + grad_adj
|
|
|
|
if(using_fp16):
|
|
return (param_out.astype(np.float16), mom_out.astype(np.float16))
|
|
else:
|
|
return (param_out.astype(np.float32), mom_out.astype(np.float32))
|
|
|
|
@staticmethod
|
|
def ref_row_wise_adagrad(param_in, mom_in, grad, lr, epsilon):
|
|
mom_out = mom_in + np.mean(np.square(grad))
|
|
grad_adj = lr * grad / (np.sqrt(mom_out) + epsilon)
|
|
param_out = param_in + grad_adj
|
|
return (param_out, mom_out)
|
|
|
|
@given(inputs=hu.tensors(n=3),
|
|
lr=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
**hu.gcs)
|
|
def test_adagrad(self, inputs, lr, epsilon, gc, dc):
|
|
param, momentum, grad = inputs
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adagrad",
|
|
["param", "momentum", "grad", "lr"],
|
|
["param", "momentum"],
|
|
epsilon=epsilon,
|
|
device_option=gc,
|
|
)
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, momentum, grad, lr],
|
|
functools.partial(self.ref_adagrad, epsilon=epsilon))
|
|
|
|
# Suppress filter_too_much health check.
|
|
# Likely caused by `assume` call falling through too often.
|
|
@settings(suppress_health_check=[HealthCheck.filter_too_much])
|
|
@given(inputs=hu.tensors(n=3),
|
|
lr=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs)
|
|
def test_sparse_adagrad(self, inputs, lr, epsilon,
|
|
data_strategy, gc, dc):
|
|
param, momentum, grad = inputs
|
|
momentum = np.abs(momentum)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
# Create an indexing array containing values that are lists of indices,
|
|
# which index into grad
|
|
indices = data_strategy.draw(
|
|
hu.tensor(dtype=np.int64,
|
|
elements=st.sampled_from(np.arange(grad.shape[0]))),
|
|
)
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
# For now, the indices must be unique
|
|
hypothesis.assume(np.array_equal(np.unique(indices.flatten()),
|
|
np.sort(indices.flatten())))
|
|
|
|
# Sparsify grad
|
|
grad = grad[indices]
|
|
|
|
op = core.CreateOperator(
|
|
"SparseAdagrad",
|
|
["param", "momentum", "indices", "grad", "lr"],
|
|
["param", "momentum"],
|
|
epsilon=epsilon,
|
|
device_option=gc)
|
|
|
|
def ref_sparse(param, momentum, indices, grad, lr, ref_using_fp16=False):
|
|
param_out = np.copy(param)
|
|
momentum_out = np.copy(momentum)
|
|
for i, index in enumerate(indices):
|
|
param_out[index], momentum_out[index] = self.ref_adagrad(
|
|
param[index],
|
|
momentum[index],
|
|
grad[i],
|
|
lr,
|
|
epsilon,
|
|
using_fp16=ref_using_fp16
|
|
)
|
|
return (param_out, momentum_out)
|
|
|
|
ref_using_fp16_values = [False]
|
|
if dc == hu.gpu_do:
|
|
ref_using_fp16_values.append(True)
|
|
|
|
for ref_using_fp16 in ref_using_fp16_values:
|
|
if(ref_using_fp16):
|
|
print('test_sparse_adagrad with half precision embedding')
|
|
momentum_i = momentum.astype(np.float16)
|
|
param_i = param.astype(np.float16)
|
|
else:
|
|
print('test_sparse_adagrad with full precision embedding')
|
|
momentum_i = momentum.astype(np.float32)
|
|
param_i = param.astype(np.float32)
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op, [param_i, momentum_i, indices, grad, lr, ref_using_fp16],
|
|
ref_sparse
|
|
)
|
|
|
|
@given(inputs=hu.tensors(n=2),
|
|
lr=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs)
|
|
def test_sparse_adagrad_empty(self, inputs, lr, epsilon,
|
|
data_strategy, gc, dc):
|
|
param, momentum = inputs
|
|
momentum = np.abs(momentum)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
|
|
indices = np.empty(shape=(0,), dtype=np.int64)
|
|
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
op = core.CreateOperator(
|
|
"SparseAdagrad",
|
|
["param", "momentum", "indices", "grad", "lr"],
|
|
["param", "momentum"],
|
|
epsilon=epsilon,
|
|
device_option=gc)
|
|
|
|
def ref_sparse(param, momentum, indices, grad, lr):
|
|
param_out = np.copy(param)
|
|
momentum_out = np.copy(momentum)
|
|
return (param_out, momentum_out)
|
|
|
|
ref_using_fp16_values = [False]
|
|
if dc == hu.gpu_do:
|
|
ref_using_fp16_values.append(True)
|
|
|
|
for ref_using_fp16 in ref_using_fp16_values:
|
|
if(ref_using_fp16):
|
|
print('test_sparse_adagrad_empty with half precision embedding')
|
|
momentum_i = momentum.astype(np.float16)
|
|
param_i = param.astype(np.float16)
|
|
else:
|
|
print('test_sparse_adagrad_empty with full precision embedding')
|
|
momentum_i = momentum.astype(np.float32)
|
|
param_i = param.astype(np.float32)
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op, [param_i, momentum_i, indices, grad, lr], ref_sparse
|
|
)
|
|
|
|
# Suppress filter_too_much health check.
|
|
# Likely caused by `assume` call falling through too often.
|
|
@settings(suppress_health_check=[HealthCheck.filter_too_much])
|
|
@given(inputs=hu.tensors(n=2),
|
|
lr=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs)
|
|
def test_row_wise_sparse_adagrad(self, inputs, lr, epsilon,
|
|
data_strategy, gc, dc):
|
|
param, grad = inputs
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
# Create a 1D row-wise average sum of squared gradients tensor.
|
|
momentum = data_strategy.draw(
|
|
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
|
|
elements=hu.elements_of_type(dtype=np.float32))
|
|
)
|
|
momentum = np.abs(momentum)
|
|
|
|
# Create an indexing array containing values which index into grad
|
|
indices = data_strategy.draw(
|
|
hu.tensor(dtype=np.int64,
|
|
elements=st.sampled_from(np.arange(grad.shape[0]))),
|
|
)
|
|
|
|
# Note that unlike SparseAdagrad, RowWiseSparseAdagrad uses a moment
|
|
# tensor that is strictly 1-dimensional and equal in length to the
|
|
# first dimension of the parameters, so indices must also be
|
|
# 1-dimensional.
|
|
indices = indices.flatten()
|
|
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
# The indices must be unique
|
|
hypothesis.assume(np.array_equal(np.unique(indices), np.sort(indices)))
|
|
|
|
# Sparsify grad
|
|
grad = grad[indices]
|
|
|
|
op = core.CreateOperator(
|
|
"RowWiseSparseAdagrad",
|
|
["param", "momentum", "indices", "grad", "lr"],
|
|
["param", "momentum"],
|
|
epsilon=epsilon,
|
|
device_option=gc)
|
|
|
|
def ref_row_wise_sparse(param, momentum, indices, grad, lr):
|
|
param_out = np.copy(param)
|
|
momentum_out = np.copy(momentum)
|
|
for i, index in enumerate(indices):
|
|
param_out[index], momentum_out[index] = self.ref_row_wise_adagrad(
|
|
param[index], momentum[index], grad[i], lr, epsilon)
|
|
return (param_out, momentum_out)
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, momentum, indices, grad, lr],
|
|
ref_row_wise_sparse)
|
|
|
|
@given(inputs=hu.tensors(n=1),
|
|
lr=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs)
|
|
def test_row_wise_sparse_adagrad_empty(self, inputs, lr, epsilon,
|
|
data_strategy, gc, dc):
|
|
param = inputs[0]
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
momentum = data_strategy.draw(
|
|
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
|
|
elements=hu.elements_of_type(dtype=np.float32))
|
|
)
|
|
momentum = np.abs(momentum)
|
|
|
|
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
|
|
indices = np.empty(shape=(0,), dtype=np.int64)
|
|
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
op = core.CreateOperator(
|
|
"RowWiseSparseAdagrad",
|
|
["param", "momentum", "indices", "grad", "lr"],
|
|
["param", "momentum"],
|
|
epsilon=epsilon,
|
|
device_option=gc)
|
|
|
|
def ref_row_wise_sparse(param, momentum, indices, grad, lr):
|
|
param_out = np.copy(param)
|
|
momentum_out = np.copy(momentum)
|
|
return (param_out, momentum_out)
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, momentum, indices, grad, lr],
|
|
ref_row_wise_sparse)
|