pytorch/caffe2/python/layers/split.py
Yangqing Jia 8286ce1e3a Re-license to Apache
Summary: Closes https://github.com/caffe2/caffe2/pull/1260

Differential Revision: D5906739

Pulled By: Yangqing

fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
2017-09-28 16:22:00 -07:00

68 lines
2.2 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package split
# Module caffe2.python.layers.split
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import schema
from caffe2.python.layers.layers import (
ModelLayer,
)
class Split(ModelLayer):
def __init__(self, model, input_record, num_splits, axis=1,
name='split', **kwargs):
super(Split, self).__init__(model, name, input_record, **kwargs)
self.axis = axis
# Assume that first dimension is batch, so actual axis in shape is
# axis - 1
axis -= 1
assert axis >= 0
assert isinstance(input_record, schema.Scalar),\
"Incorrect input type. Excpected Scalar, but received: {0}".\
format(input_record)
input_shape = input_record.field_type().shape
assert len(input_shape) >= axis
assert input_shape[axis] % num_splits == 0
output_shape = list(input_shape)
output_shape[axis] = int(output_shape[axis] / num_splits)
data_type = input_record.field_type().base
output_scalars = [
schema.Scalar(
(data_type, output_shape),
self.get_next_blob_reference('output_{}'.format(i)),
)
for i in range(num_splits)
]
self.output_schema = schema.Tuple(*output_scalars)
def add_ops(self, net):
net.Split(
self.input_record.field_blobs(),
self.output_schema.field_blobs(),
axis=self.axis,
)