pytorch/caffe2/python/layers/sampling_trainable_mixin.py
Yangqing Jia 8286ce1e3a Re-license to Apache
Summary: Closes https://github.com/caffe2/caffe2/pull/1260

Differential Revision: D5906739

Pulled By: Yangqing

fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
2017-09-28 16:22:00 -07:00

70 lines
2.2 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package sampling_trainable_mixin
# Module caffe2.python.layers.sampling_trainable_mixin
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import abc
import six
class SamplingTrainableMixin(six.with_metaclass(abc.ABCMeta, object)):
def __init__(self, *args, **kwargs):
super(SamplingTrainableMixin, self).__init__(*args, **kwargs)
self._train_param_blobs = None
self._train_param_blobs_frozen = False
@property
@abc.abstractmethod
def param_blobs(self):
"""
List of parameter blobs for prediction net
"""
pass
@property
def train_param_blobs(self):
"""
If train_param_blobs is not set before used, default to param_blobs
"""
if self._train_param_blobs is None:
self.train_param_blobs = self.param_blobs
return self._train_param_blobs
@train_param_blobs.setter
def train_param_blobs(self, blobs):
assert not self._train_param_blobs_frozen
assert blobs is not None
self._train_param_blobs_frozen = True
self._train_param_blobs = blobs
@abc.abstractmethod
def _add_ops(self, net, param_blobs):
"""
Add ops to the given net, using the given param_blobs
"""
pass
def add_ops(self, net):
self._add_ops(net, self.param_blobs)
def add_train_ops(self, net):
self._add_ops(net, self.train_param_blobs)