mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Closes https://github.com/caffe2/caffe2/pull/1260 Differential Revision: D5906739 Pulled By: Yangqing fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
## @package sampling_trainable_mixin
|
|
# Module caffe2.python.layers.sampling_trainable_mixin
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import abc
|
|
import six
|
|
|
|
|
|
class SamplingTrainableMixin(six.with_metaclass(abc.ABCMeta, object)):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super(SamplingTrainableMixin, self).__init__(*args, **kwargs)
|
|
self._train_param_blobs = None
|
|
self._train_param_blobs_frozen = False
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def param_blobs(self):
|
|
"""
|
|
List of parameter blobs for prediction net
|
|
"""
|
|
pass
|
|
|
|
@property
|
|
def train_param_blobs(self):
|
|
"""
|
|
If train_param_blobs is not set before used, default to param_blobs
|
|
"""
|
|
if self._train_param_blobs is None:
|
|
self.train_param_blobs = self.param_blobs
|
|
return self._train_param_blobs
|
|
|
|
@train_param_blobs.setter
|
|
def train_param_blobs(self, blobs):
|
|
assert not self._train_param_blobs_frozen
|
|
assert blobs is not None
|
|
self._train_param_blobs_frozen = True
|
|
self._train_param_blobs = blobs
|
|
|
|
@abc.abstractmethod
|
|
def _add_ops(self, net, param_blobs):
|
|
"""
|
|
Add ops to the given net, using the given param_blobs
|
|
"""
|
|
pass
|
|
|
|
def add_ops(self, net):
|
|
self._add_ops(net, self.param_blobs)
|
|
|
|
def add_train_ops(self, net):
|
|
self._add_ops(net, self.train_param_blobs)
|