mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
1. Fixes #121300 2. Previously, calling `torch.tensor([2j])` after `torch.set_default_dtype(torch.float16)` will cause a runtime error. This PR also fixes it and enables test. Pull Request resolved: https://github.com/pytorch/pytorch/pull/121730 Approved by: https://github.com/peterbell10
196 lines
10 KiB
Python
196 lines
10 KiB
Python
# Owner(s): ["module: complex"]
|
|
|
|
import torch
|
|
from torch.testing._internal.common_device_type import (
|
|
instantiate_device_type_tests,
|
|
dtypes,
|
|
onlyCPU,
|
|
)
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, set_default_dtype
|
|
from torch.testing._internal.common_dtype import complex_types
|
|
|
|
devices = (torch.device('cpu'), torch.device('cuda:0'))
|
|
|
|
class TestComplexTensor(TestCase):
|
|
@dtypes(*complex_types())
|
|
def test_to_list(self, device, dtype):
|
|
# test that the complex float tensor has expected values and
|
|
# there's no garbage value in the resultant list
|
|
self.assertEqual(torch.zeros((2, 2), device=device, dtype=dtype).tolist(), [[0j, 0j], [0j, 0j]])
|
|
|
|
@dtypes(torch.float32, torch.float64, torch.float16)
|
|
def test_dtype_inference(self, device, dtype):
|
|
# issue: https://github.com/pytorch/pytorch/issues/36834
|
|
with set_default_dtype(dtype):
|
|
x = torch.tensor([3., 3. + 5.j], device=device)
|
|
if dtype == torch.float16:
|
|
self.assertEqual(x.dtype, torch.chalf)
|
|
elif dtype == torch.float32:
|
|
self.assertEqual(x.dtype, torch.cfloat)
|
|
else:
|
|
self.assertEqual(x.dtype, torch.cdouble)
|
|
|
|
@dtypes(*complex_types())
|
|
def test_conj_copy(self, device, dtype):
|
|
# issue: https://github.com/pytorch/pytorch/issues/106051
|
|
x1 = torch.tensor([5 + 1j, 2 + 2j], device=device, dtype=dtype)
|
|
xc1 = torch.conj(x1)
|
|
x1.copy_(xc1)
|
|
self.assertEqual(x1, torch.tensor([5 - 1j, 2 - 2j], device=device, dtype=dtype))
|
|
|
|
@dtypes(*complex_types())
|
|
def test_all(self, device, dtype):
|
|
# issue: https://github.com/pytorch/pytorch/issues/120875
|
|
x = torch.tensor([1 + 2j, 3 - 4j, 5j, 6], device=device, dtype=dtype)
|
|
self.assertTrue(torch.all(x))
|
|
|
|
@dtypes(*complex_types())
|
|
def test_any(self, device, dtype):
|
|
# issue: https://github.com/pytorch/pytorch/issues/120875
|
|
x = torch.tensor([0, 0j, -0 + 0j, -0 - 0j, 0 + 0j, 0 - 0j], device=device, dtype=dtype)
|
|
self.assertFalse(torch.any(x))
|
|
|
|
@onlyCPU
|
|
@dtypes(*complex_types())
|
|
def test_eq(self, device, dtype):
|
|
"Test eq on complex types"
|
|
nan = float("nan")
|
|
# Non-vectorized operations
|
|
for a, b in (
|
|
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
|
|
torch.tensor([-6.1278 - 8.5019j], device=device, dtype=dtype)),
|
|
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
|
|
torch.tensor([-6.1278 - 2.1172j], device=device, dtype=dtype)),
|
|
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
|
|
torch.tensor([-0.0610 - 8.5019j], device=device, dtype=dtype)),
|
|
):
|
|
actual = torch.eq(a, b)
|
|
expected = torch.tensor([False], device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.eq(a, a)
|
|
expected = torch.tensor([True], device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.eq(a, b, out=actual)
|
|
expected = torch.tensor([complex(0)], device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.eq(a, a, out=actual)
|
|
expected = torch.tensor([complex(1)], device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
# Vectorized operations
|
|
for a, b in (
|
|
(torch.tensor([
|
|
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(2.8871, nan), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j,
|
|
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(nan, -3.2650), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j],
|
|
device=device, dtype=dtype),
|
|
torch.tensor([
|
|
-6.1278 - 8.5019j, 0.5886 + 8.8816j, complex(2.8871, nan), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j,
|
|
-6.1278 - 2.1172j, 5.1576 + 8.8816j, complex(nan, -3.2650), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j],
|
|
device=device, dtype=dtype)),
|
|
):
|
|
actual = torch.eq(a, b)
|
|
expected = torch.tensor([False, False, False, False, False, True,
|
|
False, False, False, False, False, True],
|
|
device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.eq(a, a)
|
|
expected = torch.tensor([True, True, False, True, True, True,
|
|
True, True, False, True, True, True],
|
|
device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.eq(a, b, out=actual)
|
|
expected = torch.tensor([complex(0), complex(0), complex(0), complex(0), complex(0), complex(1),
|
|
complex(0), complex(0), complex(0), complex(0), complex(0), complex(1)],
|
|
device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.eq(a, a, out=actual)
|
|
expected = torch.tensor([complex(1), complex(1), complex(0), complex(1), complex(1), complex(1),
|
|
complex(1), complex(1), complex(0), complex(1), complex(1), complex(1)],
|
|
device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
@onlyCPU
|
|
@dtypes(*complex_types())
|
|
def test_ne(self, device, dtype):
|
|
"Test ne on complex types"
|
|
nan = float("nan")
|
|
# Non-vectorized operations
|
|
for a, b in (
|
|
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
|
|
torch.tensor([-6.1278 - 8.5019j], device=device, dtype=dtype)),
|
|
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
|
|
torch.tensor([-6.1278 - 2.1172j], device=device, dtype=dtype)),
|
|
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
|
|
torch.tensor([-0.0610 - 8.5019j], device=device, dtype=dtype)),
|
|
):
|
|
actual = torch.ne(a, b)
|
|
expected = torch.tensor([True], device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.ne(a, a)
|
|
expected = torch.tensor([False], device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.ne(a, b, out=actual)
|
|
expected = torch.tensor([complex(1)], device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.ne(a, a, out=actual)
|
|
expected = torch.tensor([complex(0)], device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
# Vectorized operations
|
|
for a, b in (
|
|
(torch.tensor([
|
|
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(2.8871, nan), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j,
|
|
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(nan, -3.2650), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j],
|
|
device=device, dtype=dtype),
|
|
torch.tensor([
|
|
-6.1278 - 8.5019j, 0.5886 + 8.8816j, complex(2.8871, nan), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j,
|
|
-6.1278 - 2.1172j, 5.1576 + 8.8816j, complex(nan, -3.2650), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j],
|
|
device=device, dtype=dtype)),
|
|
):
|
|
actual = torch.ne(a, b)
|
|
expected = torch.tensor([True, True, True, True, True, False,
|
|
True, True, True, True, True, False],
|
|
device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.ne(a, a)
|
|
expected = torch.tensor([False, False, True, False, False, False,
|
|
False, False, True, False, False, False],
|
|
device=device, dtype=torch.bool)
|
|
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.ne(a, b, out=actual)
|
|
expected = torch.tensor([complex(1), complex(1), complex(1), complex(1), complex(1), complex(0),
|
|
complex(1), complex(1), complex(1), complex(1), complex(1), complex(0)],
|
|
device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
actual = torch.full_like(b, complex(2, 2))
|
|
torch.ne(a, a, out=actual)
|
|
expected = torch.tensor([complex(0), complex(0), complex(1), complex(0), complex(0), complex(0),
|
|
complex(0), complex(0), complex(1), complex(0), complex(0), complex(0)],
|
|
device=device, dtype=dtype)
|
|
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
|
|
|
|
instantiate_device_type_tests(TestComplexTensor, globals())
|
|
|
|
if __name__ == '__main__':
|
|
TestCase._default_dtype_check_enabled = True
|
|
run_tests()
|