mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Add documentations to add_bias_kv, add_zero_attn, and attn_mask. Pull Request resolved: https://github.com/pytorch/pytorch/pull/20071 Differential Revision: D15213034 Pulled By: zhangguanheng66 fbshipit-source-id: c3db4b9e8527863420ba3ce6abf6098d3b0fb7a7
1201 lines
36 KiB
Python
1201 lines
36 KiB
Python
import warnings
|
|
import torch
|
|
from . import Linear
|
|
from torch.nn.init import xavier_uniform_
|
|
from torch.nn.init import constant_
|
|
from torch.nn.init import xavier_normal_
|
|
from torch.nn.parameter import Parameter
|
|
from .module import Module
|
|
from .. import functional as F
|
|
from ..._jit_internal import weak_module, weak_script_method
|
|
|
|
|
|
@weak_module
|
|
class Threshold(Module):
|
|
r"""Thresholds each element of the input Tensor.
|
|
|
|
Threshold is defined as:
|
|
|
|
.. math::
|
|
y =
|
|
\begin{cases}
|
|
x, &\text{ if } x > \text{threshold} \\
|
|
\text{value}, &\text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
threshold: The value to threshold at
|
|
value: The value to replace with
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Threshold(0.1, 20)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['threshold', 'value', 'inplace']
|
|
|
|
def __init__(self, threshold, value, inplace=False):
|
|
super(Threshold, self).__init__()
|
|
self.threshold = threshold
|
|
self.value = value
|
|
self.inplace = inplace
|
|
# TODO: check in THNN (if inplace == True, then assert value <= threshold)
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.threshold(input, self.threshold, self.value, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace' if self.inplace else ''
|
|
return 'threshold={}, value={}{}'.format(
|
|
self.threshold, self.value, inplace_str
|
|
)
|
|
|
|
|
|
@weak_module
|
|
class ReLU(Module):
|
|
r"""Applies the rectified linear unit function element-wise:
|
|
|
|
:math:`\text{ReLU}(x)= \max(0, x)`
|
|
|
|
Args:
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/ReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.ReLU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
|
|
An implementation of CReLU - https://arxiv.org/abs/1603.05201
|
|
|
|
>>> m = nn.ReLU()
|
|
>>> input = torch.randn(2).unsqueeze(0)
|
|
>>> output = torch.cat((m(input),m(-input)))
|
|
"""
|
|
__constants__ = ['inplace']
|
|
|
|
def __init__(self, inplace=False):
|
|
super(ReLU, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.relu(input, inplace=self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = 'inplace' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
|
|
@weak_module
|
|
class RReLU(Module):
|
|
r"""Applies the randomized leaky rectified liner unit function, element-wise,
|
|
as described in the paper:
|
|
|
|
`Empirical Evaluation of Rectified Activations in Convolutional Network`_.
|
|
|
|
The function is defined as:
|
|
|
|
.. math::
|
|
\text{RReLU}(x) =
|
|
\begin{cases}
|
|
x & \text{if } x \geq 0 \\
|
|
ax & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
where :math:`a` is randomly sampled from uniform distribution
|
|
:math:`\mathcal{U}(\text{lower}, \text{upper})`.
|
|
|
|
See: https://arxiv.org/pdf/1505.00853.pdf
|
|
|
|
Args:
|
|
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
|
|
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.RReLU(0.1, 0.3)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _`Empirical Evaluation of Rectified Activations in Convolutional Network`:
|
|
https://arxiv.org/abs/1505.00853
|
|
"""
|
|
__constants__ = ['lower', 'upper', 'inplace']
|
|
|
|
def __init__(self, lower=1. / 8, upper=1. / 3, inplace=False):
|
|
super(RReLU, self).__init__()
|
|
self.lower = lower
|
|
self.upper = upper
|
|
self.inplace = inplace
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace' if self.inplace else ''
|
|
return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str)
|
|
|
|
|
|
@weak_module
|
|
class Hardtanh(Module):
|
|
r"""Applies the HardTanh function element-wise
|
|
|
|
HardTanh is defined as:
|
|
|
|
.. math::
|
|
\text{HardTanh}(x) = \begin{cases}
|
|
1 & \text{ if } x > 1 \\
|
|
-1 & \text{ if } x < -1 \\
|
|
x & \text{ otherwise } \\
|
|
\end{cases}
|
|
|
|
The range of the linear region :math:`[-1, 1]` can be adjusted using
|
|
:attr:`min_val` and :attr:`max_val`.
|
|
|
|
Args:
|
|
min_val: minimum value of the linear region range. Default: -1
|
|
max_val: maximum value of the linear region range. Default: 1
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Keyword arguments :attr:`min_value` and :attr:`max_value`
|
|
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Hardtanh.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Hardtanh(-2, 2)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['min_val', 'max_val', 'inplace']
|
|
|
|
def __init__(self, min_val=-1., max_val=1., inplace=False, min_value=None, max_value=None):
|
|
super(Hardtanh, self).__init__()
|
|
if min_value is not None:
|
|
warnings.warn("keyword argument min_value is deprecated and renamed to min_val")
|
|
min_val = min_value
|
|
if max_value is not None:
|
|
warnings.warn("keyword argument max_value is deprecated and renamed to max_val")
|
|
max_val = max_value
|
|
|
|
self.min_val = min_val
|
|
self.max_val = max_val
|
|
self.inplace = inplace
|
|
assert self.max_val > self.min_val
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.hardtanh(input, self.min_val, self.max_val, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace' if self.inplace else ''
|
|
return 'min_val={}, max_val={}{}'.format(
|
|
self.min_val, self.max_val, inplace_str
|
|
)
|
|
|
|
|
|
@weak_module
|
|
class ReLU6(Hardtanh):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{ReLU6}(x) = \min(\max(0,x), 6)
|
|
|
|
Args:
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/ReLU6.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.ReLU6()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def __init__(self, inplace=False):
|
|
super(ReLU6, self).__init__(0., 6., inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = 'inplace' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
|
|
@weak_module
|
|
class Sigmoid(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}
|
|
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Sigmoid.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Sigmoid()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return torch.sigmoid(input)
|
|
|
|
|
|
@weak_module
|
|
class Tanh(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{Tanh}(x) = \tanh(x) = \frac{e^x - e^{-x}} {e^x + e^{-x}}
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Tanh.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Tanh()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return torch.tanh(input)
|
|
|
|
|
|
@weak_module
|
|
class ELU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1))
|
|
|
|
Args:
|
|
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/ELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.ELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['alpha', 'inplace']
|
|
|
|
def __init__(self, alpha=1., inplace=False):
|
|
super(ELU, self).__init__()
|
|
self.alpha = alpha
|
|
self.inplace = inplace
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.elu(input, self.alpha, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace' if self.inplace else ''
|
|
return 'alpha={}{}'.format(self.alpha, inplace_str)
|
|
|
|
|
|
@weak_module
|
|
class CELU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
|
|
|
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .
|
|
|
|
Args:
|
|
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/CELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.CELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _`Continuously Differentiable Exponential Linear Units`:
|
|
https://arxiv.org/abs/1704.07483
|
|
"""
|
|
__constants__ = ['alpha', 'inplace']
|
|
|
|
def __init__(self, alpha=1., inplace=False):
|
|
super(CELU, self).__init__()
|
|
self.alpha = alpha
|
|
self.inplace = inplace
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.celu(input, self.alpha, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace' if self.inplace else ''
|
|
return 'alpha={}{}'.format(self.alpha, inplace_str)
|
|
|
|
|
|
@weak_module
|
|
class SELU(Module):
|
|
r"""Applied element-wise, as:
|
|
|
|
.. math::
|
|
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))
|
|
|
|
with :math:`\alpha = 1.6732632423543772848170429916717` and
|
|
:math:`\text{scale} = 1.0507009873554804934193349852946`.
|
|
|
|
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
|
|
|
|
Args:
|
|
inplace (bool, optional): can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/SELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.SELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
|
"""
|
|
__constants__ = ['inplace']
|
|
|
|
def __init__(self, inplace=False):
|
|
super(SELU, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.selu(input, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = 'inplace' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
|
|
@weak_module
|
|
class GLU(Module):
|
|
r"""Applies the gated linear unit function
|
|
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
|
|
of the input matrices and :math:`b` is the second half.
|
|
|
|
Args:
|
|
dim (int): the dimension on which to split the input. Default: -1
|
|
|
|
Shape:
|
|
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.GLU()
|
|
>>> input = torch.randn(4, 2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
|
|
def __init__(self, dim=-1):
|
|
super(GLU, self).__init__()
|
|
self.dim = dim
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.glu(input, self.dim)
|
|
|
|
def extra_repr(self):
|
|
return 'dim={}'.format(self.dim)
|
|
|
|
|
|
@weak_module
|
|
class Hardshrink(Module):
|
|
r"""Applies the hard shrinkage function element-wise:
|
|
|
|
.. math::
|
|
\text{HardShrink}(x) =
|
|
\begin{cases}
|
|
x, & \text{ if } x > \lambda \\
|
|
x, & \text{ if } x < -\lambda \\
|
|
0, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Hardshrink.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Hardshrink()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['lambd']
|
|
|
|
def __init__(self, lambd=0.5):
|
|
super(Hardshrink, self).__init__()
|
|
self.lambd = lambd
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.hardshrink(input, self.lambd)
|
|
|
|
def extra_repr(self):
|
|
return '{}'.format(self.lambd)
|
|
|
|
|
|
@weak_module
|
|
class LeakyReLU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)
|
|
|
|
|
|
or
|
|
|
|
.. math::
|
|
\text{LeakyRELU}(x) =
|
|
\begin{cases}
|
|
x, & \text{ if } x \geq 0 \\
|
|
\text{negative\_slope} \times x, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
negative_slope: Controls the angle of the negative slope. Default: 1e-2
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/LeakyReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.LeakyReLU(0.1)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['inplace', 'negative_slope']
|
|
|
|
def __init__(self, negative_slope=1e-2, inplace=False):
|
|
super(LeakyReLU, self).__init__()
|
|
self.negative_slope = negative_slope
|
|
self.inplace = inplace
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.leaky_relu(input, self.negative_slope, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace' if self.inplace else ''
|
|
return 'negative_slope={}{}'.format(self.negative_slope, inplace_str)
|
|
|
|
|
|
@weak_module
|
|
class LogSigmoid(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/LogSigmoid.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.LogSigmoid()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.logsigmoid(input)
|
|
|
|
|
|
@weak_module
|
|
class Softplus(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
|
|
|
|
SoftPlus is a smooth approximation to the ReLU function and can be used
|
|
to constrain the output of a machine to always be positive.
|
|
|
|
For numerical stability the implementation reverts to the linear function
|
|
for inputs above a certain value.
|
|
|
|
Args:
|
|
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
|
|
threshold: values above this revert to a linear function. Default: 20
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Softplus.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softplus()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['beta', 'threshold']
|
|
|
|
def __init__(self, beta=1, threshold=20):
|
|
super(Softplus, self).__init__()
|
|
self.beta = beta
|
|
self.threshold = threshold
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.softplus(input, self.beta, self.threshold)
|
|
|
|
def extra_repr(self):
|
|
return 'beta={}, threshold={}'.format(self.beta, self.threshold)
|
|
|
|
|
|
@weak_module
|
|
class Softshrink(Module):
|
|
r"""Applies the soft shrinkage function elementwise:
|
|
|
|
.. math::
|
|
\text{SoftShrinkage}(x) =
|
|
\begin{cases}
|
|
x - \lambda, & \text{ if } x > \lambda \\
|
|
x + \lambda, & \text{ if } x < -\lambda \\
|
|
0, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
lambd: the :math:`\lambda` value for the Softshrink formulation. Default: 0.5
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Softshrink.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softshrink()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['lambd']
|
|
|
|
def __init__(self, lambd=0.5):
|
|
super(Softshrink, self).__init__()
|
|
self.lambd = lambd
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.softshrink(input, self.lambd)
|
|
|
|
def extra_repr(self):
|
|
return str(self.lambd)
|
|
|
|
|
|
@weak_module
|
|
class MultiheadAttention(Module):
|
|
r"""Allows the model to jointly attend to information
|
|
from different representation subspaces.
|
|
See reference: Attention Is All You Need
|
|
|
|
.. math::
|
|
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
|
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
|
|
|
Args:
|
|
embed_dim: total dimension of the model.
|
|
num_heads: parallel attention heads.
|
|
add_bias_kv: add bias to the key and value sequences at dim=0.
|
|
add_zero_attn: add a new batch of zeros to the key and
|
|
value sequences at dim=1.
|
|
|
|
Examples::
|
|
|
|
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
|
"""
|
|
|
|
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False):
|
|
super(MultiheadAttention, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.head_dim = embed_dim // num_heads
|
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
|
self.scaling = self.head_dim ** -0.5
|
|
|
|
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
|
|
if bias:
|
|
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
|
|
else:
|
|
self.register_parameter('in_proj_bias', None)
|
|
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
if add_bias_kv:
|
|
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
|
|
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
|
|
else:
|
|
self.bias_k = self.bias_v = None
|
|
|
|
self.add_zero_attn = add_zero_attn
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
xavier_uniform_(self.in_proj_weight[:self.embed_dim, :])
|
|
xavier_uniform_(self.in_proj_weight[self.embed_dim:(self.embed_dim * 2), :])
|
|
xavier_uniform_(self.in_proj_weight[(self.embed_dim * 2):, :])
|
|
|
|
xavier_uniform_(self.out_proj.weight)
|
|
if self.in_proj_bias is not None:
|
|
constant_(self.in_proj_bias, 0.)
|
|
constant_(self.out_proj.bias, 0.)
|
|
if self.bias_k is not None:
|
|
xavier_normal_(self.bias_k)
|
|
if self.bias_v is not None:
|
|
xavier_normal_(self.bias_v)
|
|
|
|
@weak_script_method
|
|
def forward(self, query, key, value, key_padding_mask=None, incremental_state=None,
|
|
need_weights=True, static_kv=False, attn_mask=None):
|
|
r"""
|
|
Args:
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
See "Attention Is All You Need" for more details.
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
be ignored by the attention.
|
|
incremental_state: if provided, previous time steps are cached.
|
|
need_weights: output attn_output_weights.
|
|
static_kv: if true, key and value are static. The key and value in previous
|
|
states will be used.
|
|
attn_mask: mask that prevents attention to certain positions.
|
|
|
|
Shape:
|
|
- Inputs:
|
|
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
|
|
- incremental_state: a dictionary used for storing states.
|
|
- attn_mask: :math:`(L, L)` where L is the target sequence length.
|
|
|
|
- Outputs:
|
|
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
E is the embedding dimension.
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
L is the target sequence length, S is the source sequence length.
|
|
"""
|
|
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr()
|
|
kv_same = key.data_ptr() == value.data_ptr()
|
|
|
|
tgt_len, bsz, embed_dim = query.size()
|
|
assert embed_dim == self.embed_dim
|
|
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
|
assert key.size() == value.size()
|
|
|
|
if incremental_state is not None:
|
|
saved_state = self._get_input_buffer(incremental_state)
|
|
if 'prev_key' in saved_state:
|
|
# previous time steps are cached - no need to recompute
|
|
# key and value if they are static
|
|
if static_kv:
|
|
assert kv_same and not qkv_same
|
|
key = value = None
|
|
else:
|
|
saved_state = None
|
|
|
|
if qkv_same:
|
|
# self-attention
|
|
q, k, v = self._in_proj_qkv(query)
|
|
elif kv_same:
|
|
# encoder-decoder attention
|
|
q = self._in_proj_q(query)
|
|
if key is None:
|
|
assert value is None
|
|
k = v = None
|
|
else:
|
|
k, v = self._in_proj_kv(key)
|
|
else:
|
|
q = self._in_proj_q(query)
|
|
k = self._in_proj_k(key)
|
|
v = self._in_proj_v(value)
|
|
q *= self.scaling
|
|
|
|
if self.bias_k is not None:
|
|
assert self.bias_v is not None
|
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
|
if attn_mask is not None:
|
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
|
|
if key_padding_mask is not None:
|
|
key_padding_mask = torch.cat(
|
|
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
|
|
|
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
|
if k is not None:
|
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
|
if v is not None:
|
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
|
|
|
if saved_state is not None:
|
|
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
|
|
if 'prev_key' in saved_state:
|
|
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
|
|
if static_kv:
|
|
k = prev_key
|
|
else:
|
|
k = torch.cat((prev_key, k), dim=1)
|
|
if 'prev_value' in saved_state:
|
|
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
|
|
if static_kv:
|
|
v = prev_value
|
|
else:
|
|
v = torch.cat((prev_value, v), dim=1)
|
|
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim)
|
|
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim)
|
|
|
|
self._set_input_buffer(incremental_state, saved_state)
|
|
|
|
src_len = k.size(1)
|
|
|
|
if key_padding_mask is not None:
|
|
assert key_padding_mask.size(0) == bsz
|
|
assert key_padding_mask.size(1) == src_len
|
|
|
|
if self.add_zero_attn:
|
|
src_len += 1
|
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
|
if attn_mask is not None:
|
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
|
|
if key_padding_mask is not None:
|
|
key_padding_mask = torch.cat(
|
|
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)
|
|
|
|
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
|
assert list(attn_output_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
|
|
|
if attn_mask is not None:
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
attn_output_weights += attn_mask
|
|
|
|
if key_padding_mask is not None:
|
|
attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
|
attn_output_weights = attn_output_weights.masked_fill(
|
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
|
float('-inf'),
|
|
)
|
|
attn_output_weights = attn_output_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
|
|
|
attn_output_weights = F.softmax(
|
|
attn_output_weights.float(), dim=-1,
|
|
dtype=torch.float32 if attn_output_weights.dtype == torch.float16 else attn_output_weights.dtype)
|
|
attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training)
|
|
|
|
attn_output = torch.bmm(attn_output_weights, v)
|
|
assert list(attn_output.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
if need_weights:
|
|
# average attention weights over heads
|
|
attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
|
attn_output_weights = attn_output_weights.sum(dim=1) / self.num_heads
|
|
else:
|
|
attn_output_weights = None
|
|
|
|
return attn_output, attn_output_weights
|
|
|
|
def _in_proj_qkv(self, query):
|
|
return self._in_proj(query).chunk(3, dim=-1)
|
|
|
|
def _in_proj_kv(self, key):
|
|
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
|
|
|
|
def _in_proj_q(self, query):
|
|
return self._in_proj(query, end=self.embed_dim)
|
|
|
|
def _in_proj_k(self, key):
|
|
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
|
|
|
|
def _in_proj_v(self, value):
|
|
return self._in_proj(value, start=2 * self.embed_dim)
|
|
|
|
def _in_proj(self, input, start=0, end=None):
|
|
weight = self.in_proj_weight
|
|
bias = self.in_proj_bias
|
|
weight = weight[start:end, :]
|
|
if bias is not None:
|
|
bias = bias[start:end]
|
|
return F.linear(input, weight, bias)
|
|
|
|
|
|
@weak_module
|
|
class PReLU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{PReLU}(x) = \max(0,x) + a * \min(0,x)
|
|
|
|
or
|
|
|
|
.. math::
|
|
\text{PReLU}(x) =
|
|
\begin{cases}
|
|
x, & \text{ if } x \geq 0 \\
|
|
ax, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
|
|
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
|
|
a separate :math:`a` is used for each input channel.
|
|
|
|
|
|
.. note::
|
|
weight decay should not be used when learning :math:`a` for good performance.
|
|
|
|
.. note::
|
|
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
|
|
no channel dim and the number of channels = 1.
|
|
|
|
Args:
|
|
num_parameters (int): number of :math:`a` to learn.
|
|
Although it takes an int as input, there is only two values are legitimate:
|
|
1, or the number of channels at input. Default: 1
|
|
init (float): the initial value of :math:`a`. Default: 0.25
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
Attributes:
|
|
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).
|
|
|
|
.. image:: scripts/activation_images/PReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.PReLU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def __init__(self, num_parameters=1, init=0.25):
|
|
self.num_parameters = num_parameters
|
|
super(PReLU, self).__init__()
|
|
self.weight = Parameter(torch.Tensor(num_parameters).fill_(init))
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.prelu(input, self.weight)
|
|
|
|
def extra_repr(self):
|
|
return 'num_parameters={}'.format(self.num_parameters)
|
|
|
|
|
|
@weak_module
|
|
class Softsign(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Softsign.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softsign()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.softsign(input)
|
|
|
|
|
|
@weak_module
|
|
class Tanhshrink(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{Tanhshrink}(x) = x - \text{Tanh}(x)
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(N, *)`, same shape as the input
|
|
|
|
.. image:: scripts/activation_images/Tanhshrink.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Tanhshrink()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.tanhshrink(input)
|
|
|
|
|
|
@weak_module
|
|
class Softmin(Module):
|
|
r"""Applies the Softmin function to an n-dimensional input Tensor
|
|
rescaling them so that the elements of the n-dimensional output Tensor
|
|
lie in the range `[0, 1]` and sum to 1.
|
|
|
|
Softmin is defined as:
|
|
|
|
.. math::
|
|
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
Arguments:
|
|
dim (int): A dimension along which Softmin will be computed (so every slice
|
|
along dim will sum to 1).
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input, with
|
|
values in the range [0, 1]
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softmin()
|
|
>>> input = torch.randn(2, 3)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
|
|
def __init__(self, dim=None):
|
|
super(Softmin, self).__init__()
|
|
self.dim = dim
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.softmin(input, self.dim, _stacklevel=5)
|
|
|
|
|
|
@weak_module
|
|
class Softmax(Module):
|
|
r"""Applies the Softmax function to an n-dimensional input Tensor
|
|
rescaling them so that the elements of the n-dimensional output Tensor
|
|
lie in the range [0,1] and sum to 1.
|
|
|
|
Softmax is defined as:
|
|
|
|
.. math::
|
|
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input with
|
|
values in the range [0, 1]
|
|
|
|
Arguments:
|
|
dim (int): A dimension along which Softmax will be computed (so every slice
|
|
along dim will sum to 1).
|
|
|
|
.. note::
|
|
This module doesn't work directly with NLLLoss,
|
|
which expects the Log to be computed between the Softmax and itself.
|
|
Use `LogSoftmax` instead (it's faster and has better numerical properties).
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softmax()
|
|
>>> input = torch.randn(2, 3)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
|
|
def __init__(self, dim=None):
|
|
super(Softmax, self).__init__()
|
|
self.dim = dim
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
if not hasattr(self, 'dim'):
|
|
self.dim = None
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.softmax(input, self.dim, _stacklevel=5)
|
|
|
|
|
|
@weak_module
|
|
class Softmax2d(Module):
|
|
r"""Applies SoftMax over features to each spatial location.
|
|
|
|
When given an image of ``Channels x Height x Width``, it will
|
|
apply `Softmax` to each location :math:`(Channels, h_i, w_j)`
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C, H, W)`
|
|
- Output: :math:`(N, C, H, W)` (same shape as input)
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input with
|
|
values in the range [0, 1]
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softmax2d()
|
|
>>> # you softmax over the 2nd dimension
|
|
>>> input = torch.randn(2, 3, 12, 13)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
assert input.dim() == 4, 'Softmax2d requires a 4D tensor as input'
|
|
return F.softmax(input, 1, _stacklevel=5)
|
|
|
|
|
|
@weak_module
|
|
class LogSoftmax(Module):
|
|
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional
|
|
input Tensor. The LogSoftmax formulation can be simplified as:
|
|
|
|
.. math::
|
|
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
Arguments:
|
|
dim (int): A dimension along which LogSoftmax will be computed.
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input with
|
|
values in the range [-inf, 0)
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.LogSoftmax()
|
|
>>> input = torch.randn(2, 3)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
|
|
def __init__(self, dim=None):
|
|
super(LogSoftmax, self).__init__()
|
|
self.dim = dim
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
if not hasattr(self, 'dim'):
|
|
self.dim = None
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
return F.log_softmax(input, self.dim, _stacklevel=5)
|