mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
1. Removes calls to `replace_all` and `clone` and makes VTs mutable. 2. Properly handles Tuple Iterator mutation. Previously TupleIterator variables would only be properly reconstructed if they were advanced at least once in a frame. On calls to `next`, the source information would be lost (due to constructing a new iterator without using builder), which would ensure that during codegen the variable would be reconstructed from scratch. Now that VTs are mutated, the source is never lost, so we need to properly track mutation and handle it by replaying calls to `next` at the end of the modified bytecode. 3. Added test for checking iadd side effects, this was missing in our unit test coverage. 4. Fixed two incorrect sources, DelayGraphBreakVariable, and UserMethodVariable both relied on setting the source to AttrSource(parent, name) at the callsite of `var_getattr`. 5. Fixed a bug in inplace adding for lists, it would set the resulting VariableTracker's source to `None` which would utilize a different reconstruct path in codegen. Now this is handled explicitly by reconstructing vars when allow_cache=`False`, so that during side effect replay, the mutated var is correctly updated. In subsequent PRs: * Refactoring side effect tracking to be significantly simpler (I think we only need an `is_modified` flag) * Refactor `next_variables` iterator to match the signature of `next` * Remove all references to `options` in the code * Refactor VTs representing mutable collections to implement their own mutation update handling * Remove clone and/or make it specific to lists for creating slices * Add mutation tracking/replay for sets * Add mutation tracking/replay for iter.py * Removing setting source in builder (it's set at the top level after a var is returned) Pull Request resolved: https://github.com/pytorch/pytorch/pull/113725 Approved by: https://github.com/jansel
671 lines
25 KiB
Python
671 lines
25 KiB
Python
import collections
|
|
import contextlib
|
|
import functools
|
|
import importlib
|
|
import inspect
|
|
import itertools
|
|
import random
|
|
import sys
|
|
import threading
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
import torch._dynamo.config
|
|
|
|
import torch.nn
|
|
from torch._guards import TracingContext
|
|
|
|
from .. import variables
|
|
from ..allowed_functions import is_allowed
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import AttrSource, GetItemSource, ODictGetItemSource, RandomValueSource
|
|
from ..utils import (
|
|
all_hook_names,
|
|
build_checkpoint_variable,
|
|
check_constant_args,
|
|
get_custom_getattr,
|
|
is_namedtuple_cls,
|
|
is_utils_checkpoint,
|
|
istype,
|
|
namedtuple_fields,
|
|
object_has_getattribute,
|
|
)
|
|
from .base import MutableLocal, VariableTracker
|
|
from .ctx_manager import GenericContextWrappingVariable, NullContextVariable
|
|
from .dicts import ConstDictVariable
|
|
|
|
|
|
class UserDefinedVariable(VariableTracker):
|
|
pass
|
|
|
|
|
|
class UserDefinedClassVariable(UserDefinedVariable):
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
|
from . import ConstantVariable
|
|
from .builder import VariableBuilder
|
|
|
|
source = AttrSource(self.source, name) if self.source is not None else None
|
|
try:
|
|
obj = inspect.getattr_static(self.value, name)
|
|
except AttributeError:
|
|
obj = None
|
|
if isinstance(obj, staticmethod):
|
|
return variables.UserFunctionVariable(
|
|
obj.__get__(self.value), source=source
|
|
)
|
|
elif isinstance(obj, classmethod):
|
|
return variables.UserMethodVariable(obj.__func__, self, source=source)
|
|
elif source and inspect.ismemberdescriptor(obj):
|
|
return VariableBuilder(tx, source)(obj.__get__(self.value))
|
|
|
|
if name in getattr(self.value, "__dict__", {}) or ConstantVariable.is_literal(
|
|
obj
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(obj)
|
|
elif ConstantVariable.is_literal(obj):
|
|
return ConstantVariable.create(obj)
|
|
|
|
return super().var_getattr(tx, name)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if (
|
|
name == "__subclasses__"
|
|
and len(args) == 0
|
|
and not kwargs
|
|
and "__subclasses__" not in self.value.__dict__
|
|
):
|
|
options = {"mutable_local": MutableLocal()}
|
|
subs_as_vars: List[VariableTracker] = list()
|
|
for sub in self.value.__subclasses__():
|
|
source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
|
|
subs_as_vars.append(
|
|
variables.UserDefinedClassVariable(sub, source=source)
|
|
)
|
|
|
|
return variables.ListVariable(subs_as_vars, **options)
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from ..side_effects import SideEffects
|
|
from .builder import SourcelessBuilder
|
|
|
|
if self.value is contextlib.nullcontext:
|
|
return NullContextVariable()
|
|
elif (
|
|
issubclass(type(self.value), type)
|
|
and hasattr(self.value, "__enter__")
|
|
and hasattr(self.value, "__exit__")
|
|
and check_constant_args(args, kwargs)
|
|
and len(kwargs) == 0 # TODO(ybliang): support kwargs
|
|
):
|
|
unwrapped_args = [x.as_python_constant() for x in args]
|
|
return GenericContextWrappingVariable(
|
|
unwrapped_args,
|
|
cm_obj=self.value(*unwrapped_args),
|
|
)
|
|
elif is_namedtuple_cls(self.value):
|
|
fields = namedtuple_fields(self.value)
|
|
field_defaults = self.value._field_defaults
|
|
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
var_tracker_kwargs = {}
|
|
for field_name, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field_name in kwargs:
|
|
field_var = kwargs[field_name]
|
|
else:
|
|
assert field_name in field_defaults
|
|
field_var = SourcelessBuilder()(tx, field_defaults[field_name])
|
|
var_tracker_kwargs[field_name] = field_var
|
|
|
|
for name, value in var_tracker_kwargs.items():
|
|
assert name in fields
|
|
items[fields.index(name)] = value
|
|
|
|
assert all(x is not None for x in items)
|
|
return variables.NamedTupleVariable(items, self.value)
|
|
elif (
|
|
inspect.getattr_static(self.value, "__new__", None) in (object.__new__,)
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
var = tx.output.side_effects.track_object_new(
|
|
self.source,
|
|
self.value,
|
|
variables.UnspecializedNNModuleVariable
|
|
if issubclass(self.value, torch.nn.Module)
|
|
else UserDefinedObjectVariable,
|
|
{},
|
|
)
|
|
if (
|
|
inspect.getattr_static(self.value, "__init__", None)
|
|
is torch.nn.Module.__init__
|
|
):
|
|
tx.output.side_effects.store_attr(
|
|
var,
|
|
"__call_nn_module_init",
|
|
variables.ConstantVariable.create(True),
|
|
)
|
|
return var
|
|
else:
|
|
var.call_method(tx, "__init__", args, kwargs)
|
|
return var
|
|
elif variables.CustomizedDictVariable.is_matching_cls(self.value):
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.CustomizedDictVariable.create(
|
|
self.value, args, kwargs, options
|
|
)
|
|
elif variables.DataClassVariable.is_matching_cls(self.value):
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.DataClassVariable.create(self.value, args, kwargs, options)
|
|
elif (
|
|
variables.RestrictedListSubclassVariable.is_matching_cls(self.value)
|
|
and self.source
|
|
):
|
|
return variables.RestrictedListSubclassVariable(
|
|
variables.BuiltinVariable(list).call_function(tx, args, kwargs).items,
|
|
user_cls=self.value,
|
|
user_cls_source=self.source,
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def const_getattr(self, tx, name):
|
|
if name == "__name__":
|
|
return self.value.__name__
|
|
return super().const_getattr(tx, name)
|
|
|
|
|
|
class UserDefinedObjectVariable(UserDefinedVariable):
|
|
"""
|
|
Mostly objects of defined type. Catch-all for something where we only know the type.
|
|
"""
|
|
|
|
_nonvar_fields = {"value", "value_type", *UserDefinedVariable._nonvar_fields}
|
|
|
|
def __init__(self, value, value_type=None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
self.value_type = value_type or type(value)
|
|
assert type(value) is self.value_type
|
|
|
|
def __str__(self):
|
|
inner = self.value_type.__name__
|
|
if inner in [
|
|
"builtin_function_or_method",
|
|
"getset_descriptor",
|
|
"method_descriptor",
|
|
"method",
|
|
]:
|
|
inner = str(getattr(self.value, "__name__", None))
|
|
return f"{self.__class__.__name__}({inner})"
|
|
|
|
def python_type(self):
|
|
return self.value_type
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _supported_random_functions():
|
|
fns = {
|
|
random.random,
|
|
random.randint,
|
|
random.randrange,
|
|
random.uniform,
|
|
}
|
|
return fns
|
|
|
|
def _maybe_get_baseclass_method(self, name):
|
|
if name not in getattr(self.value, "__dict__", {}):
|
|
try:
|
|
return inspect.getattr_static(type(self.value), name)
|
|
except AttributeError:
|
|
pass
|
|
return None
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
BuiltinVariable,
|
|
ConstantVariable,
|
|
TupleVariable,
|
|
UserMethodVariable,
|
|
)
|
|
|
|
method = self._maybe_get_baseclass_method(name)
|
|
if method is not None:
|
|
if method is object.__init__:
|
|
return ConstantVariable.create(None)
|
|
|
|
# [NOTE] OrderedDict, dict subtypes must always have source
|
|
# We cannot instantiate such subtypes in-graph due to builtin __new__
|
|
if method is collections.OrderedDict.keys:
|
|
# subclass of OrderedDict
|
|
assert not (args or kwargs)
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
keys = list(self.value.keys())
|
|
assert all(map(ConstantVariable.is_literal, keys))
|
|
install_guard(self.source.make_guard(GuardBuilder.ODICT_KEYS))
|
|
return TupleVariable([ConstantVariable.create(k) for k in keys])
|
|
|
|
if (
|
|
method in (collections.OrderedDict.__contains__, dict.__contains__)
|
|
and len(args) == 1
|
|
and isinstance(args[0], (ConstantVariable, BuiltinVariable))
|
|
and inspect.getattr_static(type(self.value), "keys")
|
|
in (collections.OrderedDict.keys, dict.keys)
|
|
):
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
install_guard(self.source.make_guard(GuardBuilder.ODICT_KEYS))
|
|
return ConstantVariable.create(
|
|
args[0].as_python_constant() in self.value
|
|
)
|
|
|
|
if method is collections.OrderedDict.items and isinstance(
|
|
self.value, collections.OrderedDict
|
|
):
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
assert not (args or kwargs)
|
|
items = []
|
|
keys = self.call_method(tx, "keys", [], {})
|
|
for key in keys.unpack_var_sequence(tx):
|
|
items.append(
|
|
TupleVariable(
|
|
[key, self.odict_getitem(tx, key)],
|
|
)
|
|
)
|
|
return TupleVariable(items)
|
|
|
|
if method is collections.OrderedDict.__getitem__ and len(args) == 1:
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
return self.odict_getitem(tx, args[0])
|
|
|
|
# check for methods implemented in C++
|
|
if isinstance(method, types.FunctionType):
|
|
source = (
|
|
None
|
|
if self.source is None
|
|
else AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)
|
|
# TODO(jansel): add a guard to check for monkey patching?
|
|
return UserMethodVariable(method, self, source=source).call_function(
|
|
tx, args, kwargs
|
|
)
|
|
|
|
if method is list.__len__ and self.source and not (args or kwargs):
|
|
install_guard(self.source.make_guard(GuardBuilder.LIST_LENGTH))
|
|
return ConstantVariable(len(self.value))
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def unpack_var_sequence(self, tx):
|
|
if (
|
|
self.source
|
|
and self._maybe_get_baseclass_method("__iter__") is list.__iter__
|
|
and self._maybe_get_baseclass_method("__len__") is list.__len__
|
|
and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__
|
|
):
|
|
install_guard(self.source.make_guard(GuardBuilder.LIST_LENGTH))
|
|
return [
|
|
variables.LazyVariableTracker.create(
|
|
self.value[k],
|
|
source=GetItemSource(self.source, k),
|
|
)
|
|
for k in range(len(self.value))
|
|
]
|
|
return super().unpack_var_sequence(tx)
|
|
|
|
def is_supported_random(self):
|
|
try:
|
|
return self.value in self._supported_random_functions()
|
|
except TypeError:
|
|
# TypeError: unhashable type
|
|
return False
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from .. import trace_rules
|
|
from .builder import VariableBuilder
|
|
|
|
if (
|
|
self.is_supported_random()
|
|
and all(k.is_python_constant() for k in args)
|
|
and all(v.is_python_constant() for v in kwargs.values())
|
|
):
|
|
args = [x.as_python_constant() for x in args]
|
|
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
random_call_index = len(tx.random_calls)
|
|
example_value = self.value(*args, **kwargs)
|
|
source = RandomValueSource(random_call_index)
|
|
tx.random_calls.append((self.value, args, kwargs))
|
|
return VariableBuilder(tx, source).wrap_unspecialized_primitive(
|
|
example_value
|
|
)
|
|
elif istype(self.value, types.MethodType):
|
|
func = self.value.__func__
|
|
obj = self.value.__self__
|
|
if (
|
|
func is torch.utils._contextlib._DecoratorContextManager.clone
|
|
and trace_rules.lookup(obj.__class__)
|
|
== variables.TorchCtxManagerClassVariable
|
|
and not (args or kwargs)
|
|
):
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, args, kwargs)
|
|
|
|
if (
|
|
func is torch.autograd.grad_mode.inference_mode.clone
|
|
and obj.__class__ is torch.autograd.grad_mode.inference_mode
|
|
):
|
|
# simulate the inference_mode.clone implementation
|
|
var = variables.ConstantVariable(obj.mode)
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, [var], kwargs)
|
|
elif (
|
|
istype(self.value, functools.partial)
|
|
and is_allowed(self.value.func)
|
|
and all(
|
|
variables.ConstantVariable.is_literal(v)
|
|
for v in itertools.chain(self.value.args, self.value.keywords.values())
|
|
)
|
|
):
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH),
|
|
AttrSource(self.source, "args").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
AttrSource(self.source, "keywords").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
)
|
|
|
|
partial_args = [
|
|
variables.ConstantVariable.create(v) for v in self.value.args
|
|
]
|
|
partial_args.extend(args)
|
|
partial_kwargs = {
|
|
k: variables.ConstantVariable.create(v)
|
|
for k, v in self.value.keywords.items()
|
|
}
|
|
partial_kwargs.update(kwargs)
|
|
if is_utils_checkpoint(self.value.func):
|
|
return build_checkpoint_variable().call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
return variables.TorchVariable(self.value.func).call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
elif callable(self.value):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return self.call_method(tx, "__call__", args, kwargs)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def _check_for_getattribute(self):
|
|
if object_has_getattribute(self.value):
|
|
unimplemented("UserDefinedObjectVariable with custom __getattribute__")
|
|
|
|
def _check_for_getattr(self):
|
|
return get_custom_getattr(self.value)
|
|
|
|
def _getattr_static(self, name):
|
|
if (
|
|
isinstance(self.value, torch.nn.Module)
|
|
or "__slots__" in self.value.__class__.__dict__
|
|
or type(self.value) == threading.local
|
|
):
|
|
# getattr_static doesn't work on these
|
|
subobj = getattr(self.value, name)
|
|
else:
|
|
subobj = inspect.getattr_static(self.value, name)
|
|
return subobj
|
|
|
|
def var_getattr(self, tx, name):
|
|
from . import ConstantVariable
|
|
from .builder import VariableBuilder
|
|
|
|
value = self.value
|
|
source = AttrSource(self.source, name) if self.source else None
|
|
self._check_for_getattribute()
|
|
getattr_fn = self._check_for_getattr()
|
|
|
|
class NO_SUCH_SUBOBJ:
|
|
pass
|
|
|
|
try:
|
|
subobj = self._getattr_static(name)
|
|
except AttributeError:
|
|
subobj = NO_SUCH_SUBOBJ
|
|
if isinstance(getattr_fn, types.FunctionType):
|
|
return variables.UserMethodVariable(
|
|
getattr_fn, self, source=source
|
|
).call_function(tx, [ConstantVariable.create(name)], {})
|
|
elif getattr_fn is not None:
|
|
unimplemented("UserDefined with non-function __getattr__")
|
|
|
|
if isinstance(subobj, property):
|
|
return variables.UserMethodVariable(
|
|
subobj.fget, self, source=source
|
|
).call_function(tx, [], {})
|
|
elif isinstance(subobj, torch.distributions.utils.lazy_property):
|
|
subobj_var = UserDefinedObjectVariable(subobj, source=source)
|
|
return variables.UserMethodVariable(
|
|
subobj.__get__.__func__, subobj_var, source=source
|
|
).call_function(tx, [self], {})
|
|
elif isinstance(subobj, staticmethod):
|
|
return variables.UserFunctionVariable(
|
|
subobj.__get__(self.value), source=source
|
|
)
|
|
elif isinstance(subobj, classmethod):
|
|
return variables.UserMethodVariable(subobj.__func__, self, source=source)
|
|
elif isinstance(subobj, types.FunctionType) or (
|
|
isinstance(subobj, types.MethodType)
|
|
and isinstance(self.value, torch.nn.Module)
|
|
):
|
|
# Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
|
|
# Static lookup can't tell us it's a method or function correctly,
|
|
# so we trigger dynamic lookup here to get the correct type.
|
|
dynamic_subobj = getattr(self.value, name)
|
|
|
|
while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
|
|
subobj = subobj._torchdynamo_inline
|
|
dynamic_subobj = subobj
|
|
source = AttrSource(source, "_torchdynamo_inline") if source else None
|
|
|
|
if isinstance(subobj, types.MethodType):
|
|
if dynamic_subobj.__self__ is not self.value:
|
|
unimplemented("__self__ mismatch for bound method")
|
|
func = subobj.__func__
|
|
else:
|
|
assert isinstance(subobj, types.FunctionType)
|
|
func = subobj
|
|
|
|
if inspect.ismethod(dynamic_subobj):
|
|
return variables.UserMethodVariable(func, self, source=source)
|
|
elif inspect.isfunction(dynamic_subobj):
|
|
if is_utils_checkpoint(func):
|
|
return build_checkpoint_variable(source=source)
|
|
elif is_allowed(func):
|
|
return variables.TorchVariable(func, source=source)
|
|
return variables.UserFunctionVariable(func, source=source)
|
|
|
|
if (
|
|
name in getattr(value, "__dict__", {})
|
|
or ConstantVariable.is_literal(subobj)
|
|
or isinstance(
|
|
subobj,
|
|
(
|
|
torch.Tensor,
|
|
torch.nn.Module,
|
|
),
|
|
)
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(subobj)
|
|
elif ConstantVariable.is_literal(subobj):
|
|
return ConstantVariable.create(subobj)
|
|
|
|
if (
|
|
name not in getattr(value, "__dict__", {})
|
|
and type(value).__module__.startswith("torch.")
|
|
and "torch.optim" not in type(value).__module__
|
|
and not callable(value)
|
|
):
|
|
if not source:
|
|
assert getattr(
|
|
importlib.import_module(type(value).__module__),
|
|
type(value).__name__,
|
|
) is type(value)
|
|
source = AttrSource(
|
|
AttrSource(
|
|
tx.import_source(type(value).__module__), type(value).__name__
|
|
),
|
|
name,
|
|
)
|
|
|
|
return VariableBuilder(tx, source)(subobj)
|
|
options = {"source": source}
|
|
if isinstance(
|
|
subobj,
|
|
(
|
|
torch.distributions.constraints._Interval,
|
|
torch.distributions.constraints._Real,
|
|
torch.distributions.constraints.Constraint,
|
|
),
|
|
):
|
|
return UserDefinedObjectVariable(subobj, **options)
|
|
elif isinstance(self.value, torch.nn.Module) and name in all_hook_names:
|
|
assert isinstance(subobj, collections.OrderedDict)
|
|
if not subobj:
|
|
return variables.ConstDictVariable(
|
|
subobj, collections.OrderedDict, **options
|
|
)
|
|
|
|
if name == "__class__":
|
|
return UserDefinedClassVariable(type(self.value), **options)
|
|
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
def call_hasattr(self, tx, name: str) -> "VariableTracker":
|
|
if tx.output.side_effects.is_attribute_mutation(self):
|
|
try:
|
|
result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
|
|
return variables.ConstantVariable.create(
|
|
not isinstance(result, variables.DeletedVariable)
|
|
)
|
|
except KeyError:
|
|
pass
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
|
|
)
|
|
if self._check_for_getattribute() or self._check_for_getattr():
|
|
unimplemented("hasattr with custom __getattr__")
|
|
|
|
try:
|
|
self._getattr_static(name)
|
|
return variables.ConstantVariable.create(True)
|
|
except AttributeError:
|
|
return variables.ConstantVariable.create(False)
|
|
|
|
def odict_getitem(self, tx, key):
|
|
from .builder import VariableBuilder
|
|
|
|
index = (
|
|
key.source
|
|
if ConstDictVariable.is_valid_key(key) and key.source is not None
|
|
else key.as_python_constant()
|
|
)
|
|
|
|
return VariableBuilder(
|
|
tx,
|
|
ODictGetItemSource(self.source, index),
|
|
)(collections.OrderedDict.__getitem__(self.value, key.as_python_constant()))
|
|
|
|
|
|
class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def is_matching_object(obj):
|
|
mod = sys.modules.get("torchrec.sparse.jagged_tensor")
|
|
return mod is not None and type(obj) is mod.KeyedJaggedTensor
|
|
|
|
def __init__(self, value, **kwargs):
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
|
|
assert type(value) is KeyedJaggedTensor
|
|
super().__init__(value, **kwargs)
|
|
|
|
def var_getattr(self, tx, name):
|
|
if (
|
|
torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt
|
|
and self.source is not None
|
|
and name in ("_length_per_key", "_offset_per_key")
|
|
):
|
|
with TracingContext.patch(force_unspec_int_unbacked_size_like=True):
|
|
return super().var_getattr(tx, name)
|
|
return super().var_getattr(tx, name)
|
|
|
|
|
|
class RemovableHandleVariable(VariableTracker):
|
|
def __init__(
|
|
self,
|
|
mutable_local=None,
|
|
# index of the registration in the side_effects owned register_hook/handle list, used during removal.
|
|
idx=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.mutable_local = mutable_local
|
|
self.idx = idx
|
|
|
|
def call_method(self, tx, method_name, args, kwargs):
|
|
if method_name == "remove":
|
|
tx.output.side_effects.remove_hook(self.idx)
|
|
return variables.ConstantVariable.create(None)
|
|
super().call_method(tx, method_name, args, kwargs)
|
|
|
|
# This reconstruct is actually pretty unique - it does not construct the object from scratch.
|
|
# Handles always come from a register_hook call on a tensor, and so, rerunning that for the codegen of a
|
|
# hook would be incorrect.
|
|
# Instead, the invariant is that codegen has already produced the handle and stored it at a known name.
|
|
def reconstruct(self, codegen):
|
|
if self.user_code_variable_name:
|
|
# It is an invariant that at this point, a STORE_FAST was executed for this name.
|
|
return [codegen.create_load(self.user_code_variable_name)]
|
|
return super().reconstruct(codegen)
|