mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
from collections import OrderedDict
|
|
|
|
import torch
|
|
from torch.autograd import Variable
|
|
from .module import Module
|
|
|
|
|
|
class Container(Module):
|
|
"""This is the base container class for all neural networks you would define.
|
|
You will subclass your container from this class.
|
|
In the constructor you define the modules that you would want to use,
|
|
and in the __call__ function you use the constructed modules in
|
|
your operations.
|
|
|
|
To make it easier to understand, given is a small example.
|
|
```
|
|
# Example of using Container
|
|
class Net(nn.Container):
|
|
def __init__(self):
|
|
super(Net, self).__init__(
|
|
conv1 = nn.Conv2d(1, 20, 5),
|
|
relu = nn.ReLU()
|
|
)
|
|
def __call__(self, input):
|
|
output = self.relu(self.conv1(x))
|
|
return output
|
|
model = Net()
|
|
```
|
|
|
|
One can also add new modules to a container after construction.
|
|
You can do this with the add_module function.
|
|
|
|
```
|
|
# one can add modules to the container after construction
|
|
model.add_module('pool1', nn.MaxPool2d(2, 2))
|
|
```
|
|
|
|
The container has one additional method `parameters()` which
|
|
returns the list of learnable parameters in the container instance.
|
|
"""
|
|
def __init__(self, **kwargs):
|
|
super(Container, self).__init__()
|
|
self.modules = OrderedDict()
|
|
for key, value in kwargs.items():
|
|
self.add_module(key, value)
|
|
|
|
def add_module(self, name, module):
|
|
if hasattr(self, name):
|
|
raise KeyError("attribute already exists '{}'".format(name))
|
|
if not isinstance(module, Module) and module is not None:
|
|
raise ValueError("{} is not a Module subclass".format(
|
|
torch.typename(module)))
|
|
self.modules[name] = module
|
|
|
|
def __getattr__(self, name):
|
|
if 'modules' in self.__dict__:
|
|
modules = self.__dict__['modules']
|
|
if name in modules:
|
|
return modules[name]
|
|
return Module.__getattr__(self, name)
|
|
|
|
def parameters(self, memo=None):
|
|
if memo is None:
|
|
memo = set()
|
|
super(Container, self).parameters(memo)
|
|
for module in self.modules.values():
|
|
for p in module.parameters(memo):
|
|
yield p
|
|
|
|
def type(self, type, *forwarded_args):
|
|
for module in self.modules.values():
|
|
module.type(type, *forwarded_args)
|
|
return super(Container, self).type(type, *forwarded_args)
|
|
|
|
|
|
class Sequential(Container):
|
|
|
|
def __init__(self, *args):
|
|
super(Sequential, self).__init__()
|
|
if len(args) == 1 and isinstance(args[0], OrderedDict):
|
|
for key, module in args[0].items():
|
|
self.add_module(key, module)
|
|
else:
|
|
idx = 0
|
|
for module in args:
|
|
self.add_module(str(idx), module)
|
|
idx += 1
|
|
|
|
def __getitem__(self, idx):
|
|
if idx >= len(self.modules):
|
|
raise IndexError('index {} is out of range'.format(idx))
|
|
it = self.modules.values()
|
|
for i in range(idx-1):
|
|
it.next()
|
|
return it.next()
|
|
|
|
def forward(self, input):
|
|
for module in self.modules.values():
|
|
input = module(input)
|
|
return input
|
|
|