pytorch/torch/jit/frontend.py
anjali411 f9ca0d87a7 Teach Python TS frontend to parse complex literals (#52881)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52881

**This PR adds:**
1. logic to parse complex constants (complex literals of the form `bj`)
2. logic to parse complex lists
3. support for complex constructors: `complex(tensor/int/float/bool, tensor/int/float/bool)`
4. Limited operator support
     - `add`, `sub`, `mul`, `torch.tensor`, `torch.as_tensor`

**Follow-up work:**
1. Add complex support for unary and other registered ops.
2. support complex constructor with string as input (this is supported in Python eager mode).
3. Test all emitXYZ for all XYZ in `ir_emitter.cpp` (currently only emitConst, emitValueToTensor are tested). e.g., test loops etc.
4. onnx doesn't support complex tensors, so we should error out with a clear and descriptive error message.

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Differential Revision: D27245059

Pulled By: anjali411

fbshipit-source-id: af043b5159ae99a9cc8691b5a8401503fa8d6f05
2021-03-24 08:12:17 -07:00

881 lines
34 KiB
Python

import torch
import sys
import ast
import inspect
import string
from textwrap import dedent
from typing import List
from torch._C._jit_tree_views import (
ClassDef, Ident, Stmt, Decl, Def, Var,
EmptyTypeAnnotation, Param, ExprStmt, Assign,
Delete, Return, Raise, Assert, AugAssign, While,
For, If, Pass, Break, Continue, Apply, Dots, Select,
TrueLiteral, FalseLiteral, NoneLiteral, Starred,
ListLiteral, TupleLiteral, DictLiteral, Const,
StringLiteral, ListComp, Attribute, BinOp, UnaryOp,
SliceExpr, Subscript, TernaryIf, With, WithItem, Property,
DictComp,
)
from torch._utils_internal import get_source_lines_and_file
from torch._jit_internal import SourceContext, should_drop, is_static_fn
import torch.jit.annotations
# Borrowed from cPython implementation
# https://github.com/python/cpython/blob/561612d8456cfab5672c9b445521113b847bd6b3/Lib/textwrap.py#L411#
_reserved_prefix = '__jit'
_reserved_names = {'print'}
_identifier_chars = set(string.ascii_lowercase + string.ascii_uppercase + string.digits)
def is_reserved_name(name):
return name.startswith(_reserved_prefix) or name in _reserved_names
pretty_node_names = {
ast.FunctionDef: "function definitions",
ast.For: "for loops",
ast.Delete: "del statements",
ast.ClassDef: "class definitions",
ast.With: "with statements",
ast.Raise: "raise statements",
ast.Assert: "assertions",
ast.Import: "import statements",
ast.ImportFrom: "import statements",
ast.Global: "global variables",
ast.Break: "break statements",
ast.Continue: "continue statements",
}
node_start_tokens = {
ast.FunctionDef: "def",
ast.For: "for",
ast.Delete: "del",
ast.ClassDef: "class",
ast.With: "with",
ast.Raise: "raise",
ast.Assert: "assert",
ast.Import: "import",
ast.ImportFrom: "from",
ast.Global: "global",
ast.Break: "break",
ast.Continue: "continue",
}
pretty_node_names.update({
ast.AsyncFunctionDef: "async function definitions",
ast.AsyncFor: "async for loops",
ast.AsyncWith: "async with statements",
ast.Try: "try blocks",
ast.Nonlocal: "nonlocal variables",
})
node_start_tokens.update({
ast.AsyncFunctionDef: "async def",
ast.AsyncFor: "async for",
ast.AsyncWith: "async with",
ast.Try: "try",
ast.Nonlocal: "nonlocal",
})
if sys.version_info >= (3, 6):
pretty_node_names.update({
ast.AnnAssign: "annotated assignments",
})
# NB: no specific token for AnnAssign
class FrontendError(Exception):
def __init__(self, source_range, msg):
self.source_range = source_range
self.msg = msg
# This has to be instantiated here so the ErrorReport is accurate to the
# call stack when the FrontendError was raised
self.error_report = torch._C.ErrorReport(self.source_range)
def __str__(self):
return self.msg + self.error_report.what().lstrip()
class NotSupportedError(FrontendError):
pass
class UnsupportedNodeError(NotSupportedError):
def __init__(self, ctx, offending_node, reason=''):
# If we don't have a specific token, we default to length of 1
node_type = type(offending_node)
range_len = len(node_start_tokens.get(node_type, ' '))
source_range = ctx.make_range(offending_node.lineno,
offending_node.col_offset,
offending_node.col_offset + range_len)
feature_name = pretty_node_names.get(node_type, node_type.__name__)
msg = "{} {}aren't supported".format(feature_name, reason + ' ' if reason else '')
super(UnsupportedNodeError, self).__init__(source_range, msg)
class FrontendTypeError(FrontendError):
pass
def build_withitems(ctx, items):
items = [build_withitem(ctx, i) for i in items]
return list(items)
def build_stmts(ctx, stmts):
stmts = [build_stmt(ctx, s) for s in stmts]
return list(filter(None, stmts))
def get_class_properties(cls, self_name):
"""
Get a list of Property objects representing the properties of a class.
Args:
cls: The class to get properties of.
self_name: The name of the class that the properties should belong to.
Returns:
A list of Property objects corresponding to the properties of cls. Property
here refers to the subclass of TreeView.
"""
props = inspect.getmembers(
cls, predicate=lambda m: isinstance(m, property))
# Any property that should not compiled must be in this list on the Module.
unused_properties = getattr(cls, "__jit_unused_properties__", [])
# Create Property TreeView objects from inspected property objects.
properties = []
for prop in props:
if prop[0] not in unused_properties and not should_drop(prop[1].fget):
getter = get_jit_def(prop[1].fget, f"__{prop[0]}_getter", self_name=self_name)
setter = get_jit_def(prop[1].fset, f"__{prop[0]}_setter", self_name=self_name) if prop[1].fset else None
properties.append(Property(getter.range(), Ident(getter.range(), prop[0]), getter, setter))
return properties
def get_jit_class_def(cls, self_name):
# Get defs for each method within the current class independently
# TODO: proper overriding analysis when implementing class inheritance
methods = inspect.getmembers(
cls,
predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
and not is_static_fn(cls, m.__name__)
and m.__name__ in cls.__dict__
)
def is_classmethod(fn):
return inspect.ismethod(fn) and getattr(fn, "__self__", None) == cls
methods = [get_jit_def(method[1],
method[0],
self_name=self_name,
is_classmethod=is_classmethod(method[1])) for method in methods]
properties = get_class_properties(cls, self_name)
sourcelines, file_lineno, filename = get_source_lines_and_file(cls, torch._C.ErrorReport.call_stack())
source = ''.join(sourcelines)
dedent_src = dedent(source)
py_ast = ast.parse(dedent_src)
leading_whitespace_len = len(source.split('\n', 1)[0]) - len(dedent_src.split('\n', 1)[0])
ctx = SourceContext(source, filename, file_lineno, leading_whitespace_len, False)
return build_class_def(ctx, py_ast.body[0], methods, properties, self_name)
def normalize_source_lines(sourcelines: List[str]) -> List[str]:
"""
This helper function accepts a list of source lines. It finds the
indentation level of the function definition (`def`), then it indents
all lines in the function body to a point at or greater than that
level. This allows for comments and continued string literals that
are at a lower indentation than the rest of the code.
Args:
sourcelines: function source code, separated into lines by
the '\n' character
Returns:
A list of source lines that have been correctly aligned
"""
def remove_prefix(text, prefix):
return text[text.startswith(prefix) and len(prefix):]
# Find the line and line number containing the function definition
for i, l in enumerate(sourcelines):
if l.lstrip().startswith("def"):
idx = i
break
fn_def = sourcelines[idx]
# Get a string representing the amount of leading whitespace
whitespace = fn_def.split("def")[0]
# Add this leading whitespace to all lines before and after the `def`
aligned_prefix = [whitespace + remove_prefix(s, whitespace) for s in sourcelines[:idx]]
aligned_suffix = [whitespace + remove_prefix(s, whitespace) for s in sourcelines[idx + 1:]]
# Put it together again
aligned_prefix.append(fn_def)
return aligned_prefix + aligned_suffix
def get_jit_def(fn, def_name, self_name=None, is_classmethod=False):
"""
Build a JIT AST (TreeView) from the given function.
Args:
fn: A function object to compile
def_name: The name to give to the resulting AST object. This is not
always the same as `fn.__name__`, for example:
def _forward(self):
...
forward = _forward
In this case, the `__name__` attribute of the function object is "_forward",
but we want the result AST to have the name "forward".
self_name: If this function is a method, what the type name of `self` is.
"""
sourcelines, file_lineno, filename = get_source_lines_and_file(fn, torch._C.ErrorReport.call_stack())
sourcelines = normalize_source_lines(sourcelines)
source = ''.join(sourcelines)
dedent_src = dedent(source)
py_ast = ast.parse(dedent_src)
if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
raise RuntimeError(f"Expected a single top-level function: {filename}:{file_lineno}")
leading_whitespace_len = len(source.split('\n', 1)[0]) - len(dedent_src.split('\n', 1)[0])
type_line = torch.jit.annotations.get_type_line(source)
ctx = SourceContext(source, filename, file_lineno, leading_whitespace_len, True)
fn_def = py_ast.body[0]
if is_classmethod:
arg_name = fn_def.args.args[0].arg
# Insert a statement that assigns the first argument to the class
assign_stmt = ast.parse(f"{arg_name} = {self_name}").body[0]
fn_def.body.insert(0, assign_stmt)
# Swap out the function signature and body if it is unused
if should_drop(fn):
unused_fn_def = ast.parse("def unused_fn(self: Any):\n\traise RuntimeError(\"Cannot call @unused methods\")")
if len(unused_fn_def.body) != 1 or not isinstance(unused_fn_def.body[0], ast.FunctionDef):
raise RuntimeError(f"Expected a single top-level function: {filename}:{file_lineno}")
unused_def = unused_fn_def.body[0]
fn_def.body = unused_def.body
# kwarg/vararg not supported by `build_def`
fn_def.args.kwarg = fn_def.args.vararg = None
for arg in fn_def.args.args + fn_def.args.kwonlyargs:
# Replace potentially unsupported type annotations by "Any"
arg.annotation = unused_def.args.args[0].annotation
return build_def(ctx, fn_def, type_line, def_name, self_name=self_name)
class Builder(object):
def __call__(self, ctx, node):
method = getattr(self, 'build_' + node.__class__.__name__, None)
if method is None:
raise UnsupportedNodeError(ctx, node)
return method(ctx, node)
def build_class_def(ctx, py_def, methods, properties, self_name):
r = ctx.make_range(py_def.lineno, py_def.col_offset,
py_def.col_offset + len("class"))
return ClassDef(Ident(r, self_name), [Stmt(method) for method in methods], properties)
def build_def(ctx, py_def, type_line, def_name, self_name=None):
body = py_def.body
r = ctx.make_range(py_def.lineno + len(py_def.decorator_list),
py_def.col_offset,
py_def.col_offset + len("def"))
param_list = build_param_list(ctx, py_def.args, self_name)
return_type = None
if getattr(py_def, 'returns', None) is not None:
return_type = build_expr(ctx, py_def.returns)
decl = Decl(r, param_list, return_type)
is_method = self_name is not None
if type_line is not None:
type_comment_decl = torch._C.parse_type_comment(type_line)
decl = torch._C.merge_type_from_type_comment(decl, type_comment_decl, is_method)
return Def(Ident(r, def_name),
decl,
build_stmts(ctx, body))
_vararg_kwarg_err = ("Compiled functions can't take variable number of arguments "
"or use keyword-only arguments with defaults")
def build_param_list(ctx, py_args, self_name):
if py_args.kwarg is not None:
expr = py_args.kwarg
ctx_range = ctx.make_range(expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg))
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
if py_args.vararg is not None:
expr = py_args.vararg
ctx_range = ctx.make_range(expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg))
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
if len(py_args.kw_defaults) > 0:
# kw_defaults is a list of the values for the kwargs (which default to None),
# so they don't actually have line numbers.
for arg in py_args.kw_defaults:
if arg is not None:
ctx_range = build_expr(ctx, arg).range()
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
result = [build_param(ctx, arg, self_name, False) for arg in py_args.args]
result += [build_param(ctx, arg, self_name, True) for arg in py_args.kwonlyargs]
return result
def build_param(ctx, py_arg, self_name, kwarg_only):
# NB: In Python3 py_arg is a pair of (str arg, expr? annotation)
name = py_arg.arg
r = ctx.make_range(py_arg.lineno, py_arg.col_offset, py_arg.col_offset + len(name))
if getattr(py_arg, 'annotation', None) is not None:
annotation_expr = build_expr(ctx, py_arg.annotation)
elif self_name is not None and name == 'self':
annotation_expr = Var(Ident(r, self_name))
else:
annotation_expr = EmptyTypeAnnotation(r)
return Param(annotation_expr, Ident(r, name), kwarg_only)
def get_default_args(fn):
if fn is None:
return {}
signature = inspect.signature(fn)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty
}
def get_default_args_for_class(cls):
"""
Get default arguments for all methods in a class (except for static methods).
Args:
cls: type - The class type to inspect for default arguments.
Returns:
A Dict[str, Dict[str, Any]] which maps each method name to a Dict[str, Any]
that maps each argument name to its default value.
"""
# Get methods (except static methods because those are compiled separately as
# if they were independent script functions).
methods = inspect.getmembers(
cls,
predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
and not is_static_fn(cls, m.__name__)
and m.__name__ in cls.__dict__
)
# Get method defaults. Property defaults do not need to be considered
# because setters cannot be invoked without a value.
defaults = {method_name: get_default_args(method_impl) for method_name, method_impl in methods}
return defaults
class WithItemBuilder(Builder):
@staticmethod
def build_withitem(ctx, item):
lineno = item.context_expr.lineno
start = item.context_expr.col_offset
end = start + len(pretty_node_names[ast.With])
op_vars = item.optional_vars
r = ctx.make_range(lineno, start, end)
return WithItem(r, build_expr(ctx, item.context_expr), build_expr(ctx, op_vars) if op_vars else None)
class StmtBuilder(Builder):
augassign_map = {
ast.Add: '+',
ast.Sub: '-',
ast.Mult: '*',
ast.Div: '/',
ast.Mod: '%',
ast.BitOr: '|',
ast.BitAnd: '&',
ast.BitXor: '^',
ast.LShift: '<<',
ast.RShift: '>>',
ast.Pow: '**',
}
@staticmethod
def build_Expr(ctx, stmt):
value = stmt.value
if value.__class__.__name__ == 'Str':
# If a statement is a string literal expression,
# then it is a docstring. Just ignore it.
return None
else:
return ExprStmt(build_expr(ctx, value))
@staticmethod
def build_Assign(ctx, stmt):
rhs = build_expr(ctx, stmt.value)
lhs = [build_expr(ctx, x) for x in stmt.targets]
return Assign(lhs, rhs)
@staticmethod
def build_AnnAssign(ctx, stmt):
if stmt.value is None:
raise UnsupportedNodeError(ctx, stmt, reason='without assigned value')
rhs = build_expr(ctx, stmt.value)
lhs = build_expr(ctx, stmt.target)
the_type = build_expr(ctx, stmt.annotation)
return Assign([lhs], rhs, the_type)
@staticmethod
def build_Delete(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("del"))
return Delete(r, [build_expr(ctx, target) for target in stmt.targets])
@staticmethod
def build_Return(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("return"))
return Return(r, None if stmt.value is None else build_expr(ctx, stmt.value))
@staticmethod
def build_Raise(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("raise"))
expr = build_expr(ctx, stmt.exc)
return Raise(r, expr)
@staticmethod
def build_Assert(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("assert"))
test = build_expr(ctx, stmt.test)
msg = build_expr(ctx, stmt.msg) if stmt.msg is not None else None
return Assert(r, test, msg)
@staticmethod
def build_AugAssign(ctx, stmt):
lhs = build_expr(ctx, stmt.target)
rhs = build_expr(ctx, stmt.value)
op = type(stmt.op)
if op in StmtBuilder.augassign_map:
op_token = StmtBuilder.augassign_map[op]
else:
raise NotSupportedError(
find_before(ctx, rhs.range().start, '=', offsets=(-1, 0)),
"unsupported kind of augumented assignment: " + op.__name__)
return AugAssign(lhs, op_token, rhs)
@staticmethod
def build_While(ctx, stmt):
if stmt.orelse:
# TODO: try to recover the location of else:? Python doesn't give us useful
# annotations in this case
raise NotSupportedError(None, "else branches of while loops aren't supported")
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("while"))
return While(r, build_expr(ctx, stmt.test),
build_stmts(ctx, stmt.body))
@staticmethod
def build_For(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("for"))
if stmt.orelse:
raise NotSupportedError(r, "else branches of for loops aren't supported")
return For(
r, [build_expr(ctx, stmt.target)],
[build_expr(ctx, stmt.iter)], build_stmts(ctx, stmt.body))
@staticmethod
def build_If(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("if"))
return If(r, build_expr(ctx, stmt.test),
build_stmts(ctx, stmt.body),
build_stmts(ctx, stmt.orelse))
@staticmethod
def build_Print(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("print"))
if stmt.dest:
raise NotSupportedError(r, "print statements with non-default destinations aren't supported")
args = [build_expr(ctx, val) for val in stmt.values]
return ExprStmt(Apply(Var(Ident(r, "print")), args, []))
@staticmethod
def build_Pass(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("pass"))
return Pass(r)
@staticmethod
def build_Break(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("break"))
return Break(r)
@staticmethod
def build_Continue(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("continue"))
return Continue(r)
@staticmethod
def build_With(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("with"))
return With(r, build_withitems(ctx, stmt.items), build_stmts(ctx, stmt.body))
class ExprBuilder(Builder):
binop_map = {
ast.Add: '+',
ast.Sub: '-',
ast.Mult: '*',
ast.Div: '/',
ast.Pow: '**',
ast.Mod: '%',
ast.FloorDiv: '//',
ast.BitAnd: '&',
ast.BitXor: '^',
ast.BitOr: '|',
ast.LShift: '<<',
ast.RShift: '>>',
}
binop_map[ast.MatMult] = '@'
unop_map = {
ast.Not: 'not',
ast.USub: '-',
ast.Invert: '~',
}
boolop_map = {
ast.And: 'and',
ast.Or: 'or',
}
cmpop_map = {
ast.Eq: '==',
ast.NotEq: '!=',
ast.LtE: '<=',
ast.Lt: '<',
ast.GtE: '>=',
ast.Gt: '>',
ast.Is: 'is',
ast.IsNot: 'is not',
ast.In: 'in',
ast.NotIn: 'not in',
}
@staticmethod
def build_Attribute(ctx, expr):
base = build_expr(ctx, expr.value)
# expr.attr is just a string, so it's not annotated in any way, so we have
# to build the range manually
source = ctx.source.encode('utf-8')
def get_char(index):
return chr(source[index])
start_pos = base.range().end + 1
while get_char(start_pos) in string.whitespace: # Skip whitespace
start_pos += 1
end_pos = start_pos + len(expr.attr)
name_range = ctx.make_raw_range(start_pos, end_pos)
return Select(base, Ident(name_range, expr.attr))
@staticmethod
def build_Call(ctx, expr):
func = build_expr(ctx, expr.func)
args = [build_expr(ctx, py_arg) for py_arg in expr.args]
if hasattr(expr, 'starargs') and expr.starargs:
stararg_expr = build_expr(ctx, expr.starargs)
args += [Starred(stararg_expr.range(), stararg_expr)]
kwargs = []
for kw in expr.keywords:
kw_expr = build_expr(ctx, kw.value)
# XXX: we could do a better job at figuring out the range for the name here
if not kw.arg:
raise NotSupportedError(kw_expr.range(), 'keyword-arg expansion is not supported')
kwargs.append(Attribute(Ident(kw_expr.range(), kw.arg), kw_expr))
return Apply(func, args, kwargs)
@staticmethod
def build_Ellipsis(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 3) # len("...") == 3
return Dots(r)
@staticmethod
def build_Name(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(expr.id))
if expr.id.startswith(_reserved_prefix):
raise NotSupportedError(r, "names of variables used in JIT-ed functions "
"can't start with " + _reserved_prefix)
if expr.id == "True":
return TrueLiteral(r)
elif expr.id == "False":
return FalseLiteral(r)
elif expr.id == "None":
return NoneLiteral(r)
elif expr.id == "Ellipsis":
return Dots(r)
return Var(Ident(r, expr.id))
@staticmethod
def build_NameConstant(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(str(expr.value)))
if expr.value is True:
return TrueLiteral(r)
elif expr.value is False:
return FalseLiteral(r)
elif expr.value is None:
return NoneLiteral(r)
elif expr.value == Ellipsis:
return Dots(r)
else:
raise ValueError("Name constant value unsupported: " + str(expr.value))
@staticmethod
def build_BinOp(ctx, expr):
lhs = build_expr(ctx, expr.left)
rhs = build_expr(ctx, expr.right)
op = type(expr.op)
if op == ast.Div and not ctx.uses_true_division:
err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
raise FrontendError(err_range, 'Division of ints in TorchScript uses Python 3 true '
'division semantics. Please put `from __future__ '
'import division` at the top of your file')
op_token = ExprBuilder.binop_map.get(op)
if op_token is None:
err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
raise NotSupportedError(err_range, "unsupported binary operator: " + op.__name__)
return BinOp(op_token, lhs, rhs)
@staticmethod
def build_UnaryOp(ctx, expr):
sub_expr = build_expr(ctx, expr.operand)
op = type(expr.op)
op_token = ExprBuilder.unop_map.get(op)
if op_token is None:
raise NotSupportedError(expr.range(), "unsupported unary operator: " + op.__name__)
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(op_token))
return UnaryOp(r, op_token, sub_expr)
@staticmethod
def build_BoolOp(ctx, expr):
if len(expr.values) < 2:
raise AssertionError("expected at least 2 values in BoolOp, but got " + str(len(expr.values)))
sub_exprs = [build_expr(ctx, sub_expr) for sub_expr in expr.values]
op = type(expr.op)
op_token = ExprBuilder.boolop_map.get(op)
if op_token is None:
err_range = ctx.make_raw_range(sub_exprs[0].range().end, sub_exprs[1].range().start)
raise NotSupportedError(err_range, "unsupported boolean operator: " + op.__name__)
lhs = sub_exprs[0]
for rhs in sub_exprs[1:]:
lhs = BinOp(op_token, lhs, rhs)
return lhs
@staticmethod
def build_IfExp(ctx, expr):
return TernaryIf(build_expr(ctx, expr.test),
build_expr(ctx, expr.body),
build_expr(ctx, expr.orelse))
@staticmethod
def build_Compare(ctx, expr):
operands = [build_expr(ctx, e) for e in [expr.left] + list(expr.comparators)]
result = None
for lhs, op_, rhs in zip(operands, expr.ops, operands[1:]):
op = type(op_)
op_token = ExprBuilder.cmpop_map.get(op)
r = ctx.make_raw_range(lhs.range().end, rhs.range().start)
if op_token is None:
raise NotSupportedError(r, "unsupported comparison operator: " + op.__name__)
if op == ast.NotIn:
# NB: `not in` is just `not( in )`, so we don't introduce new tree view
# but just make it a nested call in our tree view structure
in_expr = BinOp('in', lhs, rhs)
cmp_expr = UnaryOp(r, 'not', in_expr)
else:
cmp_expr = BinOp(op_token, lhs, rhs)
if result is None:
result = cmp_expr
else:
result = BinOp('and', result, cmp_expr)
return result
@staticmethod
def build_Subscript(ctx, expr):
def build_SliceExpr(ctx, base, slice_expr):
lower = build_expr(ctx, slice_expr.lower) if slice_expr.lower is not None else None
upper = build_expr(ctx, slice_expr.upper) if slice_expr.upper is not None else None
step = build_expr(ctx, slice_expr.step) if slice_expr.step is not None else None
return SliceExpr(base.range(), lower, upper, step)
def build_Index(ctx, base, index_expr):
if isinstance(index_expr.value, ast.Tuple):
raise NotSupportedError(base.range(),
"slicing multiple dimensions with "
"tuples not supported yet")
return build_expr(ctx, index_expr.value)
def build_ExtSlice(ctx, base, extslice):
sub_exprs = []
for expr in extslice.dims:
sub_type = type(expr)
if sub_type is ast.Index:
sub_exprs.append(build_Index(ctx, base, expr))
elif sub_type is ast.Slice:
sub_exprs.append(build_SliceExpr(ctx, base, expr))
elif sub_type is ast.Ellipsis:
sub_exprs.append(Dots(base.range()))
else:
raise NotSupportedError(base.range(),
"slicing multiple dimensions with "
"{} not supported".format(sub_type))
return sub_exprs
base = build_expr(ctx, expr.value)
sub_type = type(expr.slice)
if sub_type is ast.Index:
if isinstance(expr.slice.value, ast.Tuple):
# N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
# XXX: Indexing using a list is **different**! It triggers advanced indexing.
indices = [build_expr(ctx, index_expr) for index_expr in expr.slice.value.elts]
return Subscript(base, indices)
else:
return Subscript(base, [build_expr(ctx, expr.slice.value)])
elif sub_type is ast.Slice:
return Subscript(base, [build_SliceExpr(ctx, base, expr.slice)])
elif sub_type is ast.ExtSlice:
return Subscript(base, build_ExtSlice(ctx, base, expr.slice))
elif sys.version_info >= (3, 9): # In Python3.9 array indicies are not wrapped in ast.Index
if sub_type is ast.Tuple:
# N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
indices = []
for index_expr in expr.slice.elts:
if isinstance(index_expr, ast.Slice):
indices.append(build_SliceExpr(ctx, base, index_expr))
else:
indices.append(build_expr(ctx, index_expr))
return Subscript(base, indices)
return Subscript(base, [build_expr(ctx, expr.slice)])
else: # Ellipsis (can only happen in Python 2)
raise NotSupportedError(base.range(), "ellipsis is not supported")
@staticmethod
def build_List(ctx, expr):
return ListLiteral(ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
[build_expr(ctx, e) for e in expr.elts])
@staticmethod
def build_Tuple(ctx, expr):
return TupleLiteral(ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
[build_expr(ctx, e) for e in expr.elts])
@staticmethod
def build_Dict(ctx, expr):
range = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
if expr.keys and not expr.keys[0]:
raise NotSupportedError(range, "Dict expansion (e.g. `{**dict}`) is not supported")
return DictLiteral(range, [build_expr(ctx, e) for e in expr.keys],
[build_expr(ctx, e) for e in expr.values])
@staticmethod
def build_Num(ctx, expr):
value = str(expr.n)
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(value))
return Const(r, value)
@staticmethod
def build_Constant(ctx, expr):
value = expr.value
if value is None or isinstance(value, bool):
# NB: this check has to happen before the int check because bool is
# a subclass of int
return ExprBuilder.build_NameConstant(ctx, expr)
if isinstance(value, (int, float, complex)):
return ExprBuilder.build_Num(ctx, expr)
elif isinstance(value, str):
return ExprBuilder.build_Str(ctx, expr)
elif isinstance(value, type(Ellipsis)):
return ExprBuilder.build_Ellipsis(ctx, expr)
else:
error_range = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(str(value)))
raise FrontendError(error_range, "Unknown Constant expression type")
@staticmethod
def build_Str(ctx, expr):
value = str(expr.s)
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return StringLiteral(r, value)
@staticmethod
def build_JoinedStr(ctx, expr):
s = ''
args = []
for value in expr.values:
r = ctx.make_range(value.lineno, value.col_offset, value.col_offset + 1)
if isinstance(value, ast.FormattedValue):
if value.conversion != -1:
raise NotSupportedError(r, 'Don\'t support conversion in JoinedStr')
if value.format_spec is not None:
raise NotSupportedError(r, 'Don\'t support formatting in JoinedStr')
s += '{}'
args.append(build_expr(ctx, value.value))
elif isinstance(value, ast.Str):
s += value.s
else:
raise NotSupportedError(r, 'Unsupported value in JoinedStr')
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return Apply(Select(StringLiteral(r, s), Ident(r, 'format')), args, [])
@staticmethod
def build_ListComp(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
if (len(stmt.generators) != 1):
raise NotSupportedError(r, "Only a single generator is currently supported")
if (len(stmt.generators[0].ifs) != 0):
raise NotSupportedError(r, "Comprehension ifs are not supported yet")
elt_expr = build_expr(ctx, stmt.elt)
target_expr = build_expr(ctx, stmt.generators[0].target)
iter_expr = build_expr(ctx, stmt.generators[0].iter)
return ListComp(r, elt_expr, target_expr, iter_expr)
@staticmethod
def build_DictComp(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
if (len(stmt.generators) != 1):
raise NotSupportedError(r, "Only a single generator is currently supported")
if (len(stmt.generators[0].ifs) != 0):
raise NotSupportedError(r, "Comprehension ifs are not supported yet")
key_expr = build_expr(ctx, stmt.key)
value_expr = build_expr(ctx, stmt.value)
target_expr = build_expr(ctx, stmt.generators[0].target)
iter_expr = build_expr(ctx, stmt.generators[0].iter)
return DictComp(r, key_expr, value_expr, target_expr, iter_expr)
@staticmethod
def build_Starred(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return Starred(r, build_expr(ctx, expr.value))
build_expr = ExprBuilder()
build_stmt = StmtBuilder()
build_withitem = WithItemBuilder()
def find_before(ctx, pos, substr, offsets=(0, 0)):
new_pos = ctx.source[:pos].rindex(substr)
return ctx.make_raw_range(new_pos + offsets[0], new_pos + len(substr) + offsets[1])