mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20180 Adding ShufflenetV2 (by Ma et. al. 2018) to the caffe2's benchmark suite. To run, use: `buck run mode/opt caffe2/caffe2/python/examples:imagenet_trainer -- --train_data null --batch_size 128 --epoch_size 3200 --num_epochs 2 --num_gpus 2 --model shufflenet` Reviewed By: bddppq, xw285cornell Differential Revision: D15094282 fbshipit-source-id: 0e1ce9c5975868e917b0f179e2c5b15647a76b4e
728 lines
27 KiB
Python
728 lines
27 KiB
Python
# Module caffe2.python.examples.resnet50_trainer
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import argparse
|
|
import logging
|
|
import numpy as np
|
|
import time
|
|
import os
|
|
|
|
from caffe2.python import core, workspace, experiment_util, data_parallel_model
|
|
from caffe2.python import dyndep, optimizer
|
|
from caffe2.python import timeout_guard, model_helper, brew
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
import caffe2.python.models.resnet as resnet
|
|
import caffe2.python.models.shufflenet as shufflenet
|
|
from caffe2.python.modeling.initializers import Initializer, PseudoFP16Initializer
|
|
import caffe2.python.predictor.predictor_exporter as pred_exp
|
|
import caffe2.python.predictor.predictor_py_utils as pred_utils
|
|
from caffe2.python.predictor_constants import predictor_constants as predictor_constants
|
|
|
|
'''
|
|
Parallelized multi-GPU distributed trainer for Resne(X)t & Shufflenet.
|
|
Can be used to train on imagenet data, for example.
|
|
The default parameters can train a standard Resnet-50 (1x64d), and parameters
|
|
can be provided to train ResNe(X)t models (e.g., ResNeXt-101 32x4d).
|
|
|
|
To run the trainer in single-machine multi-gpu mode by setting num_shards = 1.
|
|
|
|
To run the trainer in multi-machine multi-gpu mode with M machines,
|
|
run the same program on all machines, specifying num_shards = M, and
|
|
shard_id = a unique integer in the set [0, M-1].
|
|
|
|
For rendezvous (the trainer processes have to know about each other),
|
|
you can either use a directory path that is visible to all processes
|
|
(e.g. NFS directory), or use a Redis instance. Use the former by
|
|
passing the `file_store_path` argument. Use the latter by passing the
|
|
`redis_host` and `redis_port` arguments.
|
|
'''
|
|
|
|
logging.basicConfig()
|
|
log = logging.getLogger("Imagenet_trainer")
|
|
log.setLevel(logging.DEBUG)
|
|
|
|
dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:file_store_handler_ops')
|
|
dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:redis_store_handler_ops')
|
|
|
|
|
|
def AddImageInput(
|
|
model,
|
|
reader,
|
|
batch_size,
|
|
img_size,
|
|
dtype,
|
|
is_test,
|
|
mean_per_channel=None,
|
|
std_per_channel=None,
|
|
):
|
|
'''
|
|
The image input operator loads image and label data from the reader and
|
|
applies transformations to the images (random cropping, mirroring, ...).
|
|
'''
|
|
data, label = brew.image_input(
|
|
model,
|
|
reader, ["data", "label"],
|
|
batch_size=batch_size,
|
|
output_type=dtype,
|
|
use_gpu_transform=True if core.IsGPUDeviceType(model._device_type) else False,
|
|
use_caffe_datum=True,
|
|
mean_per_channel=mean_per_channel,
|
|
std_per_channel=std_per_channel,
|
|
# mean_per_channel takes precedence over mean
|
|
mean=128.,
|
|
std=128.,
|
|
scale=256,
|
|
crop=img_size,
|
|
mirror=1,
|
|
is_test=is_test,
|
|
)
|
|
|
|
data = model.StopGradient(data, data)
|
|
|
|
|
|
def AddNullInput(model, reader, batch_size, img_size, dtype):
|
|
'''
|
|
The null input function uses a gaussian fill operator to emulate real image
|
|
input. A label blob is hardcoded to a single value. This is useful if you
|
|
want to test compute throughput or don't have a dataset available.
|
|
'''
|
|
suffix = "_fp16" if dtype == "float16" else ""
|
|
model.param_init_net.GaussianFill(
|
|
[],
|
|
["data" + suffix],
|
|
shape=[batch_size, 3, img_size, img_size],
|
|
)
|
|
if dtype == "float16":
|
|
model.param_init_net.FloatToHalf("data" + suffix, "data")
|
|
|
|
model.param_init_net.ConstantFill(
|
|
[],
|
|
["label"],
|
|
shape=[batch_size],
|
|
value=1,
|
|
dtype=core.DataType.INT32,
|
|
)
|
|
|
|
|
|
def SaveModel(args, train_model, epoch, use_ideep):
|
|
prefix = "[]_{}".format(train_model._device_prefix, train_model._devices[0])
|
|
predictor_export_meta = pred_exp.PredictorExportMeta(
|
|
predict_net=train_model.net.Proto(),
|
|
parameters=data_parallel_model.GetCheckpointParams(train_model),
|
|
inputs=[prefix + "/data"],
|
|
outputs=[prefix + "/softmax"],
|
|
shapes={
|
|
prefix + "/softmax": (1, args.num_labels),
|
|
prefix + "/data": (args.num_channels, args.image_size, args.image_size)
|
|
}
|
|
)
|
|
|
|
# save the train_model for the current epoch
|
|
model_path = "%s/%s_%d.mdl" % (
|
|
args.file_store_path,
|
|
args.save_model_name,
|
|
epoch,
|
|
)
|
|
|
|
# set db_type to be "minidb" instead of "log_file_db", which breaks
|
|
# the serialization in save_to_db. Need to switch back to log_file_db
|
|
# after migration
|
|
pred_exp.save_to_db(
|
|
db_type="minidb",
|
|
db_destination=model_path,
|
|
predictor_export_meta=predictor_export_meta,
|
|
use_ideep=use_ideep
|
|
)
|
|
|
|
|
|
def LoadModel(path, model, use_ideep):
|
|
'''
|
|
Load pretrained model from file
|
|
'''
|
|
log.info("Loading path: {}".format(path))
|
|
meta_net_def = pred_exp.load_from_db(path, 'minidb')
|
|
init_net = core.Net(pred_utils.GetNet(
|
|
meta_net_def, predictor_constants.GLOBAL_INIT_NET_TYPE))
|
|
predict_init_net = core.Net(pred_utils.GetNet(
|
|
meta_net_def, predictor_constants.PREDICT_INIT_NET_TYPE))
|
|
|
|
if use_ideep:
|
|
predict_init_net.RunAllOnIDEEP()
|
|
else:
|
|
predict_init_net.RunAllOnGPU()
|
|
if use_ideep:
|
|
init_net.RunAllOnIDEEP()
|
|
else:
|
|
init_net.RunAllOnGPU()
|
|
|
|
assert workspace.RunNetOnce(predict_init_net)
|
|
assert workspace.RunNetOnce(init_net)
|
|
|
|
# Hack: fix iteration counter which is in CUDA context after load model
|
|
itercnt = workspace.FetchBlob("optimizer_iteration")
|
|
workspace.FeedBlob(
|
|
"optimizer_iteration",
|
|
itercnt,
|
|
device_option=core.DeviceOption(caffe2_pb2.CPU, 0)
|
|
)
|
|
|
|
|
|
def RunEpoch(
|
|
args,
|
|
epoch,
|
|
train_model,
|
|
test_model,
|
|
total_batch_size,
|
|
num_shards,
|
|
expname,
|
|
explog,
|
|
):
|
|
'''
|
|
Run one epoch of the trainer.
|
|
TODO: add checkpointing here.
|
|
'''
|
|
# TODO: add loading from checkpoint
|
|
log.info("Starting epoch {}/{}".format(epoch, args.num_epochs))
|
|
epoch_iters = int(args.epoch_size / total_batch_size / num_shards)
|
|
test_epoch_iters = int(args.test_epoch_size / total_batch_size / num_shards)
|
|
for i in range(epoch_iters):
|
|
# This timeout is required (temporarily) since CUDA-NCCL
|
|
# operators might deadlock when synchronizing between GPUs.
|
|
timeout = args.first_iter_timeout if i == 0 else args.timeout
|
|
with timeout_guard.CompleteInTimeOrDie(timeout):
|
|
t1 = time.time()
|
|
workspace.RunNet(train_model.net.Proto().name)
|
|
t2 = time.time()
|
|
dt = t2 - t1
|
|
|
|
fmt = "Finished iteration {}/{} of epoch {} ({:.2f} images/sec)"
|
|
log.info(fmt.format(i + 1, epoch_iters, epoch, total_batch_size / dt))
|
|
prefix = "{}_{}".format(
|
|
train_model._device_prefix,
|
|
train_model._devices[0])
|
|
accuracy = workspace.FetchBlob(prefix + '/accuracy')
|
|
loss = workspace.FetchBlob(prefix + '/loss')
|
|
train_fmt = "Training loss: {}, accuracy: {}"
|
|
log.info(train_fmt.format(loss, accuracy))
|
|
|
|
num_images = epoch * epoch_iters * total_batch_size
|
|
prefix = "{}_{}".format(train_model._device_prefix, train_model._devices[0])
|
|
accuracy = workspace.FetchBlob(prefix + '/accuracy')
|
|
loss = workspace.FetchBlob(prefix + '/loss')
|
|
learning_rate = workspace.FetchBlob(
|
|
data_parallel_model.GetLearningRateBlobNames(train_model)[0]
|
|
)
|
|
test_accuracy = 0
|
|
test_accuracy_top5 = 0
|
|
if test_model is not None:
|
|
# Run 100 iters of testing
|
|
ntests = 0
|
|
for _ in range(test_epoch_iters):
|
|
workspace.RunNet(test_model.net.Proto().name)
|
|
for g in test_model._devices:
|
|
test_accuracy += np.asscalar(workspace.FetchBlob(
|
|
"{}_{}".format(test_model._device_prefix, g) + '/accuracy'
|
|
))
|
|
test_accuracy_top5 += np.asscalar(workspace.FetchBlob(
|
|
"{}_{}".format(test_model._device_prefix, g) + '/accuracy_top5'
|
|
))
|
|
ntests += 1
|
|
test_accuracy /= ntests
|
|
test_accuracy_top5 /= ntests
|
|
else:
|
|
test_accuracy = (-1)
|
|
test_accuracy_top5 = (-1)
|
|
|
|
explog.log(
|
|
input_count=num_images,
|
|
batch_count=(i + epoch * epoch_iters),
|
|
additional_values={
|
|
'accuracy': accuracy,
|
|
'loss': loss,
|
|
'learning_rate': learning_rate,
|
|
'epoch': epoch,
|
|
'top1_test_accuracy': test_accuracy,
|
|
'top5_test_accuracy': test_accuracy_top5,
|
|
}
|
|
)
|
|
assert loss < 40, "Exploded gradients :("
|
|
|
|
# TODO: add checkpointing
|
|
return epoch + 1
|
|
|
|
|
|
def Train(args):
|
|
if args.model == "resnext":
|
|
model_name = "resnext" + str(args.num_layers)
|
|
elif args.model == "shufflenet":
|
|
model_name = "shufflenet"
|
|
|
|
# Either use specified device list or generate one
|
|
if args.gpus is not None:
|
|
gpus = [int(x) for x in args.gpus.split(',')]
|
|
num_gpus = len(gpus)
|
|
else:
|
|
gpus = list(range(args.num_gpus))
|
|
num_gpus = args.num_gpus
|
|
|
|
log.info("Running on GPUs: {}".format(gpus))
|
|
|
|
# Verify valid batch size
|
|
total_batch_size = args.batch_size
|
|
batch_per_device = total_batch_size // num_gpus
|
|
assert \
|
|
total_batch_size % num_gpus == 0, \
|
|
"Number of GPUs must divide batch size"
|
|
|
|
# Verify valid image mean/std per channel
|
|
if args.image_mean_per_channel:
|
|
assert \
|
|
len(args.image_mean_per_channel) == args.num_channels, \
|
|
"The number of channels of image mean doesn't match input"
|
|
|
|
if args.image_std_per_channel:
|
|
assert \
|
|
len(args.image_std_per_channel) == args.num_channels, \
|
|
"The number of channels of image std doesn't match input"
|
|
|
|
# Round down epoch size to closest multiple of batch size across machines
|
|
global_batch_size = total_batch_size * args.num_shards
|
|
epoch_iters = int(args.epoch_size / global_batch_size)
|
|
|
|
assert \
|
|
epoch_iters > 0, \
|
|
"Epoch size must be larger than batch size times shard count"
|
|
|
|
args.epoch_size = epoch_iters * global_batch_size
|
|
log.info("Using epoch size: {}".format(args.epoch_size))
|
|
|
|
# Create ModelHelper object
|
|
if args.use_ideep:
|
|
train_arg_scope = {
|
|
'use_cudnn': False,
|
|
'cudnn_exhaustive_search': False,
|
|
'training_mode': 1
|
|
}
|
|
else:
|
|
train_arg_scope = {
|
|
'order': 'NCHW',
|
|
'use_cudnn': True,
|
|
'cudnn_exhaustive_search': True,
|
|
'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
|
|
}
|
|
train_model = model_helper.ModelHelper(
|
|
name=model_name, arg_scope=train_arg_scope
|
|
)
|
|
|
|
num_shards = args.num_shards
|
|
shard_id = args.shard_id
|
|
|
|
# Expect interfaces to be comma separated.
|
|
# Use of multiple network interfaces is not yet complete,
|
|
# so simply use the first one in the list.
|
|
interfaces = args.distributed_interfaces.split(",")
|
|
|
|
# Rendezvous using MPI when run with mpirun
|
|
if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
|
|
num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
|
|
shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
|
|
if num_shards > 1:
|
|
rendezvous = dict(
|
|
kv_handler=None,
|
|
num_shards=num_shards,
|
|
shard_id=shard_id,
|
|
engine="GLOO",
|
|
transport=args.distributed_transport,
|
|
interface=interfaces[0],
|
|
mpi_rendezvous=True,
|
|
exit_nets=None)
|
|
|
|
elif num_shards > 1:
|
|
# Create rendezvous for distributed computation
|
|
store_handler = "store_handler"
|
|
if args.redis_host is not None:
|
|
# Use Redis for rendezvous if Redis host is specified
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"RedisStoreHandlerCreate", [], [store_handler],
|
|
host=args.redis_host,
|
|
port=args.redis_port,
|
|
prefix=args.run_id,
|
|
)
|
|
)
|
|
else:
|
|
# Use filesystem for rendezvous otherwise
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"FileStoreHandlerCreate", [], [store_handler],
|
|
path=args.file_store_path,
|
|
prefix=args.run_id,
|
|
)
|
|
)
|
|
|
|
rendezvous = dict(
|
|
kv_handler=store_handler,
|
|
shard_id=shard_id,
|
|
num_shards=num_shards,
|
|
engine="GLOO",
|
|
transport=args.distributed_transport,
|
|
interface=interfaces[0],
|
|
exit_nets=None)
|
|
|
|
else:
|
|
rendezvous = None
|
|
|
|
# Model building functions
|
|
def create_resnext_model_ops(model, loss_scale):
|
|
initializer = (PseudoFP16Initializer if args.dtype == 'float16'
|
|
else Initializer)
|
|
|
|
with brew.arg_scope([brew.conv, brew.fc],
|
|
WeightInitializer=initializer,
|
|
BiasInitializer=initializer,
|
|
enable_tensor_core=args.enable_tensor_core,
|
|
float16_compute=args.float16_compute):
|
|
pred = resnet.create_resnext(
|
|
model,
|
|
"data",
|
|
num_input_channels=args.num_channels,
|
|
num_labels=args.num_labels,
|
|
num_layers=args.num_layers,
|
|
num_groups=args.resnext_num_groups,
|
|
num_width_per_group=args.resnext_width_per_group,
|
|
no_bias=True,
|
|
no_loss=True,
|
|
)
|
|
|
|
if args.dtype == 'float16':
|
|
pred = model.net.HalfToFloat(pred, pred + '_fp32')
|
|
|
|
softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
|
|
['softmax', 'loss'])
|
|
loss = model.Scale(loss, scale=loss_scale)
|
|
brew.accuracy(model, [softmax, "label"], "accuracy", top_k=1)
|
|
brew.accuracy(model, [softmax, "label"], "accuracy_top5", top_k=5)
|
|
return [loss]
|
|
|
|
def create_shufflenet_model_ops(model, loss_scale):
|
|
initializer = (PseudoFP16Initializer if args.dtype == 'float16'
|
|
else Initializer)
|
|
|
|
with brew.arg_scope([brew.conv, brew.fc],
|
|
WeightInitializer=initializer,
|
|
BiasInitializer=initializer,
|
|
enable_tensor_core=args.enable_tensor_core,
|
|
float16_compute=args.float16_compute):
|
|
pred = shufflenet.create_shufflenet(
|
|
model,
|
|
"data",
|
|
num_input_channels=args.num_channels,
|
|
num_labels=args.num_labels,
|
|
no_loss=True,
|
|
)
|
|
|
|
if args.dtype == 'float16':
|
|
pred = model.net.HalfToFloat(pred, pred + '_fp32')
|
|
|
|
softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
|
|
['softmax', 'loss'])
|
|
loss = model.Scale(loss, scale=loss_scale)
|
|
brew.accuracy(model, [softmax, "label"], "accuracy", top_k=1)
|
|
brew.accuracy(model, [softmax, "label"], "accuracy_top5", top_k=5)
|
|
return [loss]
|
|
|
|
def add_optimizer(model):
|
|
stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
|
|
|
|
if args.float16_compute:
|
|
# TODO: merge with multi-prceision optimizer
|
|
opt = optimizer.build_fp16_sgd(
|
|
model,
|
|
args.base_learning_rate,
|
|
momentum=0.9,
|
|
nesterov=1,
|
|
weight_decay=args.weight_decay, # weight decay included
|
|
policy="step",
|
|
stepsize=stepsz,
|
|
gamma=0.1
|
|
)
|
|
else:
|
|
optimizer.add_weight_decay(model, args.weight_decay)
|
|
opt = optimizer.build_multi_precision_sgd(
|
|
model,
|
|
args.base_learning_rate,
|
|
momentum=0.9,
|
|
nesterov=1,
|
|
policy="step",
|
|
stepsize=stepsz,
|
|
gamma=0.1
|
|
)
|
|
return opt
|
|
|
|
# Define add_image_input function.
|
|
# Depends on the "train_data" argument.
|
|
# Note that the reader will be shared with between all GPUS.
|
|
if args.train_data == "null":
|
|
def add_image_input(model):
|
|
AddNullInput(
|
|
model,
|
|
None,
|
|
batch_size=batch_per_device,
|
|
img_size=args.image_size,
|
|
dtype=args.dtype,
|
|
)
|
|
else:
|
|
reader = train_model.CreateDB(
|
|
"reader",
|
|
db=args.train_data,
|
|
db_type=args.db_type,
|
|
num_shards=num_shards,
|
|
shard_id=shard_id,
|
|
)
|
|
|
|
def add_image_input(model):
|
|
AddImageInput(
|
|
model,
|
|
reader,
|
|
batch_size=batch_per_device,
|
|
img_size=args.image_size,
|
|
dtype=args.dtype,
|
|
is_test=False,
|
|
mean_per_channel=args.image_mean_per_channel,
|
|
std_per_channel=args.image_std_per_channel,
|
|
)
|
|
|
|
def add_post_sync_ops(model):
|
|
"""Add ops applied after initial parameter sync."""
|
|
for param_info in model.GetOptimizationParamInfo(model.GetParams()):
|
|
if param_info.blob_copy is not None:
|
|
model.param_init_net.HalfToFloat(
|
|
param_info.blob,
|
|
param_info.blob_copy[core.DataType.FLOAT]
|
|
)
|
|
|
|
data_parallel_model.Parallelize(
|
|
train_model,
|
|
input_builder_fun=add_image_input,
|
|
forward_pass_builder_fun=create_resnext_model_ops
|
|
if args.model == "resnext" else create_shufflenet_model_ops,
|
|
optimizer_builder_fun=add_optimizer,
|
|
post_sync_builder_fun=add_post_sync_ops,
|
|
devices=gpus,
|
|
rendezvous=rendezvous,
|
|
optimize_gradient_memory=False,
|
|
cpu_device=args.use_cpu,
|
|
ideep=args.use_ideep,
|
|
shared_model=args.use_cpu,
|
|
combine_spatial_bn=args.use_cpu,
|
|
)
|
|
|
|
data_parallel_model.OptimizeGradientMemory(train_model, {}, set(), False)
|
|
|
|
workspace.RunNetOnce(train_model.param_init_net)
|
|
workspace.CreateNet(train_model.net)
|
|
|
|
# Add test model, if specified
|
|
test_model = None
|
|
if (args.test_data is not None):
|
|
log.info("----- Create test net ----")
|
|
if args.use_ideep:
|
|
test_arg_scope = {
|
|
'use_cudnn': False,
|
|
'cudnn_exhaustive_search': False,
|
|
}
|
|
else:
|
|
test_arg_scope = {
|
|
'order': "NCHW",
|
|
'use_cudnn': True,
|
|
'cudnn_exhaustive_search': True,
|
|
}
|
|
test_model = model_helper.ModelHelper(
|
|
name=model_name + "_test",
|
|
arg_scope=test_arg_scope,
|
|
init_params=False,
|
|
)
|
|
|
|
test_reader = test_model.CreateDB(
|
|
"test_reader",
|
|
db=args.test_data,
|
|
db_type=args.db_type,
|
|
)
|
|
|
|
def test_input_fn(model):
|
|
AddImageInput(
|
|
model,
|
|
test_reader,
|
|
batch_size=batch_per_device,
|
|
img_size=args.image_size,
|
|
dtype=args.dtype,
|
|
is_test=True,
|
|
mean_per_channel=args.image_mean_per_channel,
|
|
std_per_channel=args.image_std_per_channel,
|
|
)
|
|
|
|
data_parallel_model.Parallelize(
|
|
test_model,
|
|
input_builder_fun=test_input_fn,
|
|
forward_pass_builder_fun=create_resnext_model_ops
|
|
if args.model == "resnext" else create_shufflenet_model_ops,
|
|
post_sync_builder_fun=add_post_sync_ops,
|
|
param_update_builder_fun=None,
|
|
devices=gpus,
|
|
cpu_device=args.use_cpu,
|
|
)
|
|
workspace.RunNetOnce(test_model.param_init_net)
|
|
workspace.CreateNet(test_model.net)
|
|
|
|
epoch = 0
|
|
# load the pre-trained model and reset epoch
|
|
if args.load_model_path is not None:
|
|
LoadModel(args.load_model_path, train_model, args.use_ideep)
|
|
|
|
# Sync the model params
|
|
data_parallel_model.FinalizeAfterCheckpoint(train_model)
|
|
|
|
# reset epoch. load_model_path should end with *_X.mdl,
|
|
# where X is the epoch number
|
|
last_str = args.load_model_path.split('_')[-1]
|
|
if last_str.endswith('.mdl'):
|
|
epoch = int(last_str[:-4])
|
|
log.info("Reset epoch to {}".format(epoch))
|
|
else:
|
|
log.warning("The format of load_model_path doesn't match!")
|
|
|
|
expname = "%s_gpu%d_b%d_L%d_lr%.2f_v2" % (
|
|
model_name,
|
|
args.num_gpus,
|
|
total_batch_size,
|
|
args.num_labels,
|
|
args.base_learning_rate,
|
|
)
|
|
|
|
explog = experiment_util.ModelTrainerLog(expname, args)
|
|
|
|
# Run the training one epoch a time
|
|
while epoch < args.num_epochs:
|
|
epoch = RunEpoch(
|
|
args,
|
|
epoch,
|
|
train_model,
|
|
test_model,
|
|
total_batch_size,
|
|
num_shards,
|
|
expname,
|
|
explog
|
|
)
|
|
|
|
# Save the model for each epoch
|
|
SaveModel(args, train_model, epoch, args.use_ideep)
|
|
|
|
model_path = "%s/%s_" % (
|
|
args.file_store_path,
|
|
args.save_model_name
|
|
)
|
|
# remove the saved model from the previous epoch if it exists
|
|
if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
|
|
os.remove(model_path + str(epoch - 1) + ".mdl")
|
|
|
|
|
|
def main():
|
|
# TODO: use argv
|
|
parser = argparse.ArgumentParser(
|
|
description="Caffe2: ImageNet Trainer"
|
|
)
|
|
parser.add_argument("--train_data", type=str, default=None, required=True,
|
|
help="Path to training data (or 'null' to simulate)")
|
|
parser.add_argument("--num_layers", type=int, default=50,
|
|
help="The number of layers in ResNe(X)t model")
|
|
parser.add_argument("--resnext_num_groups", type=int, default=1,
|
|
help="The cardinality of resnext")
|
|
parser.add_argument("--resnext_width_per_group", type=int, default=64,
|
|
help="The cardinality of resnext")
|
|
parser.add_argument("--test_data", type=str, default=None,
|
|
help="Path to test data")
|
|
parser.add_argument("--image_mean_per_channel", type=float, nargs='+',
|
|
help="The per channel mean for the images")
|
|
parser.add_argument("--image_std_per_channel", type=float, nargs='+',
|
|
help="The per channel standard deviation for the images")
|
|
parser.add_argument("--test_epoch_size", type=int, default=50000,
|
|
help="Number of test images")
|
|
parser.add_argument("--db_type", type=str, default="lmdb",
|
|
help="Database type (such as lmdb or leveldb)")
|
|
parser.add_argument("--gpus", type=str,
|
|
help="Comma separated list of GPU devices to use")
|
|
parser.add_argument("--num_gpus", type=int, default=1,
|
|
help="Number of GPU devices (instead of --gpus)")
|
|
parser.add_argument("--num_channels", type=int, default=3,
|
|
help="Number of color channels")
|
|
parser.add_argument("--image_size", type=int, default=224,
|
|
help="Input image size (to crop to)")
|
|
parser.add_argument("--num_labels", type=int, default=1000,
|
|
help="Number of labels")
|
|
parser.add_argument("--batch_size", type=int, default=32,
|
|
help="Batch size, total over all GPUs")
|
|
parser.add_argument("--epoch_size", type=int, default=1500000,
|
|
help="Number of images/epoch, total over all machines")
|
|
parser.add_argument("--num_epochs", type=int, default=1000,
|
|
help="Num epochs.")
|
|
parser.add_argument("--base_learning_rate", type=float, default=0.1,
|
|
help="Initial learning rate.")
|
|
parser.add_argument("--weight_decay", type=float, default=1e-4,
|
|
help="Weight decay (L2 regularization)")
|
|
parser.add_argument("--cudnn_workspace_limit_mb", type=int, default=64,
|
|
help="CuDNN workspace limit in MBs")
|
|
parser.add_argument("--num_shards", type=int, default=1,
|
|
help="Number of machines in distributed run")
|
|
parser.add_argument("--shard_id", type=int, default=0,
|
|
help="Shard id.")
|
|
parser.add_argument("--run_id", type=str,
|
|
help="Unique run identifier (e.g. uuid)")
|
|
parser.add_argument("--redis_host", type=str,
|
|
help="Host of Redis server (for rendezvous)")
|
|
parser.add_argument("--redis_port", type=int, default=6379,
|
|
help="Port of Redis server (for rendezvous)")
|
|
parser.add_argument("--file_store_path", type=str, default="/tmp",
|
|
help="Path to directory to use for rendezvous")
|
|
parser.add_argument("--save_model_name", type=str, default="resnext_model",
|
|
help="Save the trained model to a given name")
|
|
parser.add_argument("--load_model_path", type=str, default=None,
|
|
help="Load previously saved model to continue training")
|
|
parser.add_argument("--use_cpu", type=bool, default=False,
|
|
help="Use CPU instead of GPU")
|
|
parser.add_argument("--use_ideep", type=bool, default=False,
|
|
help="Use ideep")
|
|
parser.add_argument('--dtype', default='float',
|
|
choices=['float', 'float16'],
|
|
help='Data type used for training')
|
|
parser.add_argument('--float16_compute', action='store_true',
|
|
help="Use float 16 compute, if available")
|
|
parser.add_argument('--enable_tensor_core', action='store_true',
|
|
help='Enable Tensor Core math for Conv and FC ops')
|
|
parser.add_argument("--distributed_transport", type=str, default="tcp",
|
|
help="Transport to use for distributed run [tcp|ibverbs]")
|
|
parser.add_argument("--distributed_interfaces", type=str, default="",
|
|
help="Network interfaces to use for distributed run")
|
|
|
|
parser.add_argument("--first_iter_timeout", type=int, default=600,
|
|
help="Timeout (secs) of the first iteration "
|
|
"(default: %(default)s)")
|
|
parser.add_argument("--timeout", type=int, default=60,
|
|
help="Timeout (secs) of each (except the first) iteration "
|
|
"(default: %(default)s)")
|
|
parser.add_argument("--model",
|
|
default="resnext", const="resnext", nargs="?",
|
|
choices=["shufflenet", "resnext"],
|
|
help="List of models which can be run")
|
|
args = parser.parse_args()
|
|
|
|
Train(args)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
|
|
main()
|