pytorch/caffe2/python/operator_test/adagrad_test.py
Luke Yeager a47652379f Fix SparseAdagrad for indices.ndim>1
Summary:
Same fix as https://github.com/caffe2/caffe2/pull/249, but for SparseAdagrad.

Also update the tests for both ops to test this functionality.
Closes https://github.com/caffe2/caffe2/pull/675

Differential Revision: D5148750

Pulled By: akyrola

fbshipit-source-id: d30b722429bc547fd53400c1a29e4ee9e2e6ed18
2017-05-30 12:02:18 -07:00

94 lines
3.2 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import functools
import hypothesis
from hypothesis import given, strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
class TestAdagrad(hu.HypothesisTestCase):
@staticmethod
def ref_adagrad(param_in, mom_in, grad, lr, epsilon):
mom_out = mom_in + np.square(grad)
grad_adj = lr * grad / (np.sqrt(mom_out) + epsilon)
param_out = param_in + grad_adj
return (param_out, mom_out)
@given(inputs=hu.tensors(n=3),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs)
def test_adagrad(self, inputs, lr, epsilon, gc, dc):
param, momentum, grad = inputs
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Adagrad",
["param", "momentum", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, momentum, grad, lr],
functools.partial(self.ref_adagrad, epsilon=epsilon))
@given(inputs=hu.tensors(n=3),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs)
def test_sparse_adagrad(self, inputs, lr, epsilon,
data_strategy, gc, dc):
param, momentum, grad = inputs
momentum = np.abs(momentum)
lr = np.array([lr], dtype=np.float32)
# Create an indexing array containing values which index into grad
indices = data_strategy.draw(
hu.tensor(dtype=np.int64,
elements=st.sampled_from(np.arange(grad.shape[0]))),
)
hypothesis.note('indices.shape: %s' % str(indices.shape))
# For now, the indices must be unique
hypothesis.assume(np.array_equal(np.unique(indices.flatten()),
np.sort(indices.flatten())))
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseAdagrad",
["param", "momentum", "indices", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc)
def ref_sparse(param, momentum, indices, grad, lr):
param_out = np.copy(param)
momentum_out = np.copy(momentum)
for i, index in enumerate(indices):
param_out[index], momentum_out[index] = self.ref_adagrad(
param[index], momentum[index], grad[i], lr, epsilon)
return (param_out, momentum_out)
self.assertReferenceChecks(
gc, op,
[param, momentum, indices, grad, lr],
ref_sparse)