mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: We want to add versioning to DCP to the metadata so that whenever planner logic changes, we can use the version on save to determine how to load the data Test Plan: added a test Rollback Plan: Differential Revision: D76135887 Pull Request resolved: https://github.com/pytorch/pytorch/pull/155343 Approved by: https://github.com/teja-rao
981 lines
34 KiB
Python
981 lines
34 KiB
Python
# mypy: allow-untyped-defs
|
|
import collections
|
|
import dataclasses
|
|
import io
|
|
import json
|
|
import operator
|
|
import os
|
|
import pickle
|
|
import queue
|
|
import threading
|
|
import uuid
|
|
import warnings
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Generator, Iterable, Iterator, Sequence
|
|
from contextlib import contextmanager
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from io import UnsupportedOperation
|
|
from pathlib import Path
|
|
from typing import Any, Callable, cast, Final, IO, Optional, Union
|
|
|
|
# introduced as collections.abc.Buffer in Python 3.12
|
|
from typing_extensions import Buffer
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch._utils import _get_available_device_type, _get_device_module
|
|
from torch.distributed._shard._utils import narrow_tensor_by_index
|
|
from torch.distributed.checkpoint._extension import (
|
|
ExtensionRegistry,
|
|
StreamTransformExtension,
|
|
)
|
|
from torch.distributed.checkpoint._hf_utils import (
|
|
CUSTOM_METADATA_KEY,
|
|
DCP_VERSION_KEY,
|
|
FORMAT_KEY,
|
|
FORMAT_VALUE,
|
|
HF_DCP_VERSION,
|
|
)
|
|
from torch.distributed.checkpoint.metadata import Metadata, STATE_DICT_TYPE, StorageMeta
|
|
from torch.distributed.checkpoint.planner import (
|
|
LoadItemType,
|
|
LoadPlan,
|
|
LoadPlanner,
|
|
ReadItem,
|
|
SavePlan,
|
|
SavePlanner,
|
|
WriteItem,
|
|
WriteItemType,
|
|
)
|
|
from torch.distributed.checkpoint.staging import BlockingAsyncStager
|
|
from torch.distributed.checkpoint.storage import (
|
|
StorageReader,
|
|
StorageWriter,
|
|
WriteResult,
|
|
)
|
|
from torch.distributed.checkpoint.utils import _create_file_view
|
|
from torch.futures import Future
|
|
|
|
|
|
__all__ = [
|
|
"FileSystemWriter",
|
|
"FileSystemReader",
|
|
"FileSystem",
|
|
"FileSystemBase",
|
|
"SerializationFormat",
|
|
]
|
|
|
|
_metadata_fn: str = ".metadata"
|
|
|
|
CURRENT_DCP_VERSION: Final[str] = "1.0.0"
|
|
|
|
|
|
@dataclass
|
|
class _StorageInfo:
|
|
"""This is the per entry storage info."""
|
|
|
|
relative_path: str
|
|
offset: int
|
|
length: int
|
|
transform_descriptors: Optional[Sequence[str]] = None
|
|
|
|
def __getstate__(self):
|
|
return {k: v for k, v in self.__dict__.items() if v is not None}
|
|
|
|
|
|
@dataclass
|
|
class _StoragePrefix:
|
|
prefix: str
|
|
|
|
|
|
class SerializationFormat(Enum):
|
|
TORCH_SAVE = "torch_save"
|
|
SAFETENSORS = "safetensors"
|
|
|
|
|
|
DEFAULT_SUFFIX = ".distcp"
|
|
|
|
|
|
def _generate_uuid() -> str:
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
class _TensorLoader(ABC):
|
|
@abstractmethod
|
|
def add(self, size: int, obj: object) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def start_loading(self) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def values(self) -> Iterator[tuple[torch.Tensor, object]]:
|
|
pass
|
|
|
|
|
|
class _SerialCpuLoader(_TensorLoader):
|
|
def __init__(self, resolve_fun: Callable) -> None:
|
|
self.resolve_fun = resolve_fun
|
|
self.items: list[tuple[int, object]] = []
|
|
|
|
def add(self, size: int, obj: object) -> None:
|
|
self.items.append((size, obj))
|
|
|
|
def start_loading(self) -> None:
|
|
pass
|
|
|
|
def values(self) -> Iterator[tuple[torch.Tensor, object]]:
|
|
for _, obj in self.items:
|
|
tensor = self.resolve_fun(obj).detach()
|
|
tensor = tensor.cpu()
|
|
if tensor.storage().size() != tensor.numel():
|
|
tensor = tensor.clone()
|
|
yield (
|
|
tensor,
|
|
obj,
|
|
)
|
|
|
|
|
|
class _OverlappingCpuLoader(_TensorLoader):
|
|
def __init__(
|
|
self,
|
|
resolve_fun: Callable,
|
|
stream: Optional[torch.Stream] = None,
|
|
inflight_threshhold: int = 1_000_000,
|
|
) -> None:
|
|
self.resolve_fun = resolve_fun
|
|
self.items: list[tuple[int, object]] = []
|
|
self.inflight_threshhold = inflight_threshhold
|
|
self.in_flight_data = 0
|
|
self.current_items: collections.deque = collections.deque()
|
|
self.idx = 0
|
|
self.started = False
|
|
self.device_type = (
|
|
stream.device_type if stream else _get_available_device_type()
|
|
)
|
|
self.device_module = _get_device_module(self.device_type)
|
|
self.stream = cast(
|
|
torch.cuda.Stream, stream or self.device_module.current_stream()
|
|
)
|
|
if self.stream != self.device_module.current_stream():
|
|
self.stream.wait_stream(self.device_module.current_stream())
|
|
|
|
@property
|
|
def _done(self) -> bool:
|
|
return self.idx >= len(self.items)
|
|
|
|
def _drain(self) -> list[tuple[torch.Tensor, object]]:
|
|
drained = []
|
|
if self.in_flight_data >= self.inflight_threshhold:
|
|
self.stream.synchronize()
|
|
while self.in_flight_data >= self.inflight_threshhold:
|
|
val = self.current_items.popleft()
|
|
self.in_flight_data -= val[0].numel() * val[0].element_size()
|
|
drained.append(val)
|
|
return drained
|
|
|
|
def _refill(self) -> None:
|
|
with self.device_module.stream(self.stream):
|
|
while not self._done and self.in_flight_data < self.inflight_threshhold:
|
|
_, obj = self.items[self.idx]
|
|
self.idx += 1
|
|
tensor = self.resolve_fun(obj).detach()
|
|
if tensor.device.type == self.device_type:
|
|
tensor = tensor.to(device="cpu", non_blocking=True)
|
|
elif tensor.device == torch.device("cpu"):
|
|
if (
|
|
tensor.untyped_storage().size()
|
|
!= tensor.numel() * tensor.itemsize
|
|
):
|
|
# this forces the tensor to be both contiguous and with minimal storage
|
|
tensor = tensor.clone()
|
|
|
|
self.current_items.append(
|
|
(
|
|
tensor,
|
|
obj,
|
|
)
|
|
)
|
|
self.in_flight_data += tensor.numel() * tensor.element_size()
|
|
|
|
def _finish(self) -> Iterable[tuple[torch.Tensor, object]]:
|
|
assert self._done
|
|
if len(self.current_items) > 0:
|
|
self.stream.synchronize()
|
|
return self.current_items
|
|
|
|
def add(self, size: int, obj: object) -> None:
|
|
if self.started:
|
|
raise RuntimeError("cannot add items after loading started")
|
|
self.items.append((size, obj))
|
|
|
|
def start_loading(self) -> None:
|
|
if self.started:
|
|
return
|
|
self.started = True
|
|
self.items.sort(key=operator.itemgetter(0))
|
|
self._refill()
|
|
|
|
def values(self) -> Iterator[tuple[torch.Tensor, object]]:
|
|
self.start_loading()
|
|
while not self._done:
|
|
drained = self._drain()
|
|
self._refill()
|
|
yield from drained
|
|
|
|
yield from self._finish()
|
|
|
|
|
|
class _StorageWriterTransforms:
|
|
"""
|
|
This is experimental, and will likely move elsewhere in the
|
|
future. It lives here to minimize changes while we are still
|
|
learning and gathering feedback.
|
|
"""
|
|
|
|
def __init__(
|
|
self, extensions: Optional[Sequence[StreamTransformExtension]] = None
|
|
) -> None:
|
|
"""
|
|
If the extensions arg is None, this means the implementation
|
|
should provide whatever defaults it chooses. An empty
|
|
sequence indicates no extensions should be used. At this
|
|
time, the default extensions sequence is empty.
|
|
"""
|
|
self.extensions = () if extensions is None else extensions
|
|
|
|
def transform_save_stream(
|
|
self, write_item: WriteItem, raw_stream: io.IOBase
|
|
) -> tuple[IO[bytes], list[str]]:
|
|
# In order to avoid leaking fds, transformers' close must
|
|
# cascade to wrapped streams, but since this function can
|
|
# append to the raw stream, we can't close the actual stream.
|
|
# So, we use this to put a wrapper around the raw stream's
|
|
# close() to make it a noop, and it gets closed once all files
|
|
# are appended.
|
|
|
|
class NoCloseWriter(io.IOBase):
|
|
def __init__(self, raw: io.IOBase):
|
|
self.raw = raw
|
|
|
|
def writeable(self) -> bool:
|
|
return True
|
|
|
|
def write(self, b: Buffer) -> int:
|
|
return self.raw.write(b)
|
|
|
|
def close(self):
|
|
self.flush()
|
|
self.raw.flush()
|
|
# but not close.
|
|
|
|
transform_to = cast(IO[bytes], NoCloseWriter(raw_stream))
|
|
|
|
for ex in self.extensions:
|
|
transform_to = ex.transform_to(transform_to)
|
|
|
|
return (transform_to, [ex.get_descriptor() for ex in reversed(self.extensions)])
|
|
|
|
|
|
def _item_size(item: WriteItem) -> int:
|
|
size = 1
|
|
assert item.tensor_data is not None
|
|
# can't use math.prod as PT needs to support older python
|
|
for s in item.tensor_data.size:
|
|
size *= s
|
|
|
|
dtype = item.tensor_data.properties.dtype
|
|
return size * torch._utils._element_size(dtype)
|
|
|
|
|
|
def _split_by_size_and_type(bins: int, items: list[WriteItem]) -> list[list[WriteItem]]:
|
|
if bins == 1:
|
|
return [items]
|
|
|
|
bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO]
|
|
tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO]
|
|
|
|
buckets: list[list[WriteItem]] = [[] for _ in range(bins)]
|
|
bucket_sizes = [0 for _ in range(bins)]
|
|
|
|
tensor_w.sort(key=_item_size, reverse=True)
|
|
|
|
for i, wi in enumerate(bytes_w):
|
|
buckets[i % bins].append(wi)
|
|
|
|
for wi in tensor_w:
|
|
# TODO replace with headq
|
|
idx = min(enumerate(bucket_sizes), key=operator.itemgetter(1))[0]
|
|
buckets[idx].append(wi)
|
|
bucket_sizes[idx] += _item_size(wi)
|
|
|
|
return buckets
|
|
|
|
|
|
def _write_item(
|
|
transforms: _StorageWriterTransforms,
|
|
stream: io.IOBase,
|
|
data: Union[io.BytesIO, torch.Tensor],
|
|
write_item: WriteItem,
|
|
storage_key: str,
|
|
serialization_format: SerializationFormat,
|
|
) -> WriteResult:
|
|
offset = stream.tell()
|
|
|
|
(transform_to, transform_descriptors) = transforms.transform_save_stream(
|
|
write_item, stream
|
|
)
|
|
|
|
if write_item.type == WriteItemType.BYTE_IO:
|
|
assert isinstance(data, io.BytesIO)
|
|
transform_to.write(data.getbuffer())
|
|
else:
|
|
assert isinstance(data, torch.Tensor)
|
|
assert data.device == torch.device("cpu")
|
|
if serialization_format == SerializationFormat.TORCH_SAVE:
|
|
torch.save(data, transform_to)
|
|
|
|
transform_to.close()
|
|
|
|
if serialization_format == SerializationFormat.TORCH_SAVE or isinstance(
|
|
data, io.BytesIO
|
|
):
|
|
length = stream.tell() - offset
|
|
else:
|
|
length = data.numel() * data.element_size()
|
|
|
|
# For consistency with earlier versions, leave this field out of the
|
|
# metadata if there are no extensions.
|
|
info_transform_descriptors = (
|
|
None if len(transform_descriptors) == 0 else transform_descriptors
|
|
)
|
|
|
|
return WriteResult(
|
|
index=write_item.index,
|
|
size_in_bytes=length,
|
|
storage_data=_StorageInfo(
|
|
storage_key,
|
|
offset,
|
|
length,
|
|
transform_descriptors=info_transform_descriptors,
|
|
),
|
|
)
|
|
|
|
|
|
def _write_files_from_queue(
|
|
create_stream: Callable,
|
|
file_queue: queue.Queue,
|
|
result_queue: queue.Queue,
|
|
planner: SavePlanner,
|
|
transforms: _StorageWriterTransforms,
|
|
inflight_threshhold: int,
|
|
use_fsync: bool,
|
|
thread_count: int,
|
|
serialization_format: SerializationFormat,
|
|
) -> None:
|
|
try:
|
|
while True:
|
|
file_name, storage_key, write_items = file_queue.get_nowait()
|
|
loader: _TensorLoader
|
|
|
|
custom_backend_name = torch._C._get_privateuse1_backend_name()
|
|
custom_device_mod = getattr(torch, custom_backend_name, None)
|
|
|
|
# TODO: Using the OverlappingCpuLoader with multiple threads creates significant
|
|
# performance degradation, observed as being related to cuda stream syncs. We
|
|
# should try to fix this and use _OverlappingCpuLoader for all threaded cases
|
|
if (
|
|
thread_count == 1
|
|
and (
|
|
torch.cuda.is_available()
|
|
or (custom_device_mod and custom_device_mod.is_available())
|
|
)
|
|
and inflight_threshhold > 0
|
|
):
|
|
loader = _OverlappingCpuLoader(
|
|
planner.resolve_data,
|
|
inflight_threshhold=inflight_threshhold,
|
|
)
|
|
else:
|
|
loader = _SerialCpuLoader(
|
|
planner.resolve_data,
|
|
)
|
|
|
|
tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO]
|
|
for write_item in tensor_w:
|
|
loader.add(_item_size(write_item), write_item)
|
|
loader.start_loading()
|
|
|
|
bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO]
|
|
write_results = []
|
|
|
|
with create_stream(file_name, "wb") as stream:
|
|
for write_item in bytes_w:
|
|
data = planner.resolve_data(write_item)
|
|
write_results.append(
|
|
_write_item(
|
|
transforms,
|
|
stream,
|
|
data,
|
|
write_item,
|
|
storage_key,
|
|
serialization_format,
|
|
)
|
|
)
|
|
|
|
tensor_dict = {}
|
|
metadata_dict = {}
|
|
for tensor, write_item in loader.values():
|
|
assert tensor.is_cpu
|
|
write_results.append(
|
|
_write_item(
|
|
transforms,
|
|
stream,
|
|
tensor,
|
|
write_item, # type: ignore[arg-type]
|
|
storage_key,
|
|
serialization_format,
|
|
)
|
|
)
|
|
tensor_dict[write_item.index.fqn] = tensor # type: ignore[attr-defined]
|
|
metadata_dict[write_item.index.fqn] = { # type: ignore[attr-defined]
|
|
"saved_offsets": write_item.tensor_data.chunk.offsets # type: ignore[attr-defined]
|
|
}
|
|
|
|
if serialization_format == SerializationFormat.SAFETENSORS:
|
|
from safetensors.torch import save # type: ignore[import-not-found]
|
|
|
|
stream.write(
|
|
save(
|
|
tensor_dict,
|
|
metadata={
|
|
CUSTOM_METADATA_KEY: json.dumps(metadata_dict),
|
|
DCP_VERSION_KEY: str(HF_DCP_VERSION),
|
|
FORMAT_KEY: FORMAT_VALUE,
|
|
},
|
|
)
|
|
)
|
|
|
|
if use_fsync:
|
|
try:
|
|
os.fsync(stream.fileno())
|
|
except (AttributeError, UnsupportedOperation):
|
|
os.sync()
|
|
stream.close()
|
|
result_queue.put(write_results)
|
|
except queue.Empty:
|
|
pass
|
|
|
|
|
|
class FileSystemBase(ABC):
|
|
@contextmanager
|
|
@abstractmethod
|
|
def create_stream(
|
|
self, path: Union[str, os.PathLike], mode: str
|
|
) -> Generator[io.IOBase, None, None]: ...
|
|
|
|
@abstractmethod
|
|
def concat_path(
|
|
self, path: Union[str, os.PathLike], suffix: str
|
|
) -> Union[str, os.PathLike]: ...
|
|
|
|
@abstractmethod
|
|
def rename(
|
|
self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike]
|
|
) -> None: ...
|
|
|
|
@abstractmethod
|
|
def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]: ...
|
|
|
|
@abstractmethod
|
|
def mkdir(self, path: Union[str, os.PathLike]) -> None: ...
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: ...
|
|
|
|
@abstractmethod
|
|
def exists(self, path: Union[str, os.PathLike]) -> bool: ...
|
|
|
|
@abstractmethod
|
|
def rm_file(self, path: Union[str, os.PathLike]) -> None: ...
|
|
|
|
|
|
class FileSystem(FileSystemBase):
|
|
@contextmanager
|
|
def create_stream(
|
|
self, path: Union[str, os.PathLike], mode: str
|
|
) -> Generator[io.IOBase, None, None]:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
with path.open(mode) as stream:
|
|
yield cast(io.IOBase, stream)
|
|
|
|
def concat_path(
|
|
self, path: Union[str, os.PathLike], suffix: str
|
|
) -> Union[str, os.PathLike]:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
return path / suffix
|
|
|
|
def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
return path
|
|
|
|
def rename(
|
|
self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike]
|
|
) -> None:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
|
|
path.rename(cast(Path, new_path))
|
|
|
|
def mkdir(self, path: Union[str, os.PathLike]) -> None:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
@classmethod
|
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
|
|
if isinstance(checkpoint_id, Path):
|
|
return True
|
|
|
|
if "://" in str(checkpoint_id):
|
|
return False
|
|
|
|
for p in Path(checkpoint_id).parents:
|
|
if p.exists() and os.access(str(p), os.W_OK):
|
|
return True
|
|
|
|
return False
|
|
|
|
def exists(self, path: Union[str, os.PathLike]) -> bool:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
return path.exists()
|
|
|
|
def rm_file(self, path: Union[str, os.PathLike]) -> None:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
path.unlink()
|
|
|
|
def ls(self, path: Union[str, os.PathLike]) -> list[str]:
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
return [str(p) for p in path.iterdir()]
|
|
|
|
|
|
class _FileSystemWriter(StorageWriter):
|
|
"""
|
|
Basic implementation of StorageWriter using file IO.
|
|
|
|
This implementation makes the following assumptions and simplifications:
|
|
|
|
* The checkpoint path is an empty or non-existing directory.
|
|
* File creation is atomic
|
|
|
|
The checkpoint consist of one file per write request plus
|
|
a `.metadata` file with the serialized metadata.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, os.PathLike],
|
|
single_file_per_rank: bool = True,
|
|
sync_files: bool = True,
|
|
thread_count: int = 1,
|
|
per_thread_copy_ahead: int = 10_000_000,
|
|
overwrite: bool = True,
|
|
_extensions: Optional[Sequence[StreamTransformExtension]] = None,
|
|
serialization_format: SerializationFormat = SerializationFormat.TORCH_SAVE,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""
|
|
Initialize the writer pointing to `path`.
|
|
|
|
Args:
|
|
path: directory where the checkpoint will be written to.
|
|
single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
|
|
sync_files : force files to be synced to permanent storage. Default to True.
|
|
thread_count: Number of IO threads to use to write. Default to 1.
|
|
per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.
|
|
overwrite: Whether to allow overwriting existing checkpoints. Defaults to True.
|
|
_extensions: Extensions to apply to output streams (EXPERIMENTAL)
|
|
|
|
N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
|
|
"""
|
|
super().__init__()
|
|
self.fs = FileSystem()
|
|
self.path = self.fs.init_path(path)
|
|
self.single_file_per_rank = single_file_per_rank
|
|
self.sync_files = sync_files
|
|
self.thread_count = thread_count
|
|
self.per_thread_copy_ahead = per_thread_copy_ahead
|
|
self.save_id = _generate_uuid()
|
|
self.overwrite = overwrite
|
|
self.transforms = _StorageWriterTransforms(_extensions)
|
|
self.serialization_format = serialization_format
|
|
|
|
def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
|
|
if checkpoint_id:
|
|
self.path = self.fs.init_path(checkpoint_id)
|
|
self.save_id = _generate_uuid()
|
|
|
|
def set_up_storage_writer(self, is_coordinator: bool) -> None:
|
|
pass
|
|
|
|
def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
|
|
self.fs.mkdir(self.path)
|
|
if self.fs.exists(self.metadata_path):
|
|
if self.overwrite:
|
|
warnings.warn(
|
|
f"Detected an existing checkpoint in {self.metadata_path}, overwriting since {self.overwrite=}."
|
|
" Past version 2.5 of PyTorch, `overwrite` will default to False. Set this variable to True to"
|
|
" maintain this functionality or False to raise when an existing checkpoint is found."
|
|
)
|
|
else:
|
|
raise RuntimeError(f"Checkpoint already exists and {self.overwrite=}.")
|
|
|
|
return plan
|
|
|
|
def prepare_global_plan(self, plans: list[SavePlan]) -> list[SavePlan]:
|
|
new_plans = [
|
|
dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_"))
|
|
for i, plan in enumerate(plans)
|
|
]
|
|
return new_plans
|
|
|
|
def write_data(
|
|
self,
|
|
plan: SavePlan,
|
|
planner: SavePlanner,
|
|
) -> Future[list[WriteResult]]:
|
|
storage_plan: _StoragePrefix = plan.storage_data
|
|
file_count = 0
|
|
|
|
def gen_file():
|
|
nonlocal file_count
|
|
file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"
|
|
file_count += 1
|
|
return file_name
|
|
|
|
file_queue: queue.Queue = queue.Queue()
|
|
if self.single_file_per_rank:
|
|
for bucket in _split_by_size_and_type(self.thread_count, plan.items):
|
|
file_name = gen_file()
|
|
path = self.fs.concat_path(self.path, file_name)
|
|
file_queue.put((path, file_name, bucket))
|
|
else:
|
|
for item in plan.items:
|
|
file_name = gen_file()
|
|
path = self.fs.concat_path(self.path, file_name)
|
|
file_queue.put((path, file_name, [item]))
|
|
|
|
return self._write_data(planner, file_queue)
|
|
|
|
def _write_data(
|
|
self,
|
|
planner: SavePlanner,
|
|
file_queue: queue.Queue,
|
|
) -> Future[list[WriteResult]]:
|
|
result_queue: queue.Queue = queue.Queue()
|
|
|
|
threads = []
|
|
for _ in range(1, self.thread_count):
|
|
t = threading.Thread(
|
|
target=_write_files_from_queue,
|
|
args=(
|
|
self.fs.create_stream,
|
|
file_queue,
|
|
result_queue,
|
|
planner,
|
|
self.transforms,
|
|
self.per_thread_copy_ahead,
|
|
self.sync_files,
|
|
self.thread_count,
|
|
self.serialization_format,
|
|
),
|
|
)
|
|
t.start()
|
|
threads.append(t)
|
|
|
|
_write_files_from_queue(
|
|
create_stream=self.fs.create_stream,
|
|
file_queue=file_queue,
|
|
result_queue=result_queue,
|
|
planner=planner,
|
|
transforms=self.transforms,
|
|
inflight_threshhold=self.per_thread_copy_ahead,
|
|
use_fsync=self.sync_files,
|
|
thread_count=self.thread_count,
|
|
serialization_format=self.serialization_format,
|
|
)
|
|
|
|
for t in threads:
|
|
t.join()
|
|
|
|
res = []
|
|
try:
|
|
while True:
|
|
res += result_queue.get_nowait()
|
|
except queue.Empty:
|
|
fut: Future[list[WriteResult]] = Future()
|
|
fut.set_result(res)
|
|
return fut
|
|
|
|
def finish(self, metadata: Metadata, results: list[list[WriteResult]]) -> None:
|
|
metadata = dataclasses.replace(metadata, version=CURRENT_DCP_VERSION)
|
|
|
|
storage_md = {}
|
|
for wr_list in results:
|
|
storage_md.update({wr.index: wr.storage_data for wr in wr_list})
|
|
metadata.storage_data = storage_md
|
|
|
|
metadata.storage_meta = self.storage_meta()
|
|
|
|
tmp_path = cast(Path, self.fs.concat_path(self.path, f"{_metadata_fn}.tmp"))
|
|
with self.fs.create_stream(tmp_path, "wb") as metadata_file:
|
|
pickle.dump(metadata, metadata_file)
|
|
if self.sync_files:
|
|
try:
|
|
os.fsync(metadata_file.fileno())
|
|
except (AttributeError, UnsupportedOperation):
|
|
os.sync()
|
|
|
|
# delete in-case other checkpoints were present.
|
|
if self.fs.exists(self.metadata_path):
|
|
self.fs.rm_file(self.metadata_path)
|
|
|
|
self.fs.rename(tmp_path, self.metadata_path)
|
|
|
|
def storage_meta(self) -> Optional[StorageMeta]:
|
|
return StorageMeta(checkpoint_id=self.checkpoint_id, save_id=self.save_id)
|
|
|
|
@property
|
|
def metadata_path(self) -> Union[str, os.PathLike]:
|
|
return cast(Path, self.fs.concat_path(self.path, _metadata_fn))
|
|
|
|
@property
|
|
def checkpoint_id(self) -> Union[str, os.PathLike]:
|
|
"""
|
|
return the checkpoint_id that will be used to save the checkpoint.
|
|
"""
|
|
return self.path
|
|
|
|
@classmethod
|
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
|
|
return FileSystem.validate_checkpoint_id(checkpoint_id)
|
|
|
|
|
|
class _StorageReaderTransforms:
|
|
"""
|
|
This is experimental, and will likely move elsewhere in the
|
|
future. It lives here to minimize changes while we are still
|
|
learning and gathering feedback.
|
|
"""
|
|
|
|
def __init__(self, extension_registry: Optional[ExtensionRegistry] = None) -> None:
|
|
self.extension_registry = (
|
|
ExtensionRegistry() if extension_registry is None else extension_registry
|
|
)
|
|
|
|
def transform_load_stream(
|
|
self,
|
|
read_item: ReadItem,
|
|
transform_descriptors: Sequence[str],
|
|
raw_stream: IO[bytes],
|
|
) -> IO[bytes]:
|
|
extensions = self.extension_registry.from_descriptor_list(transform_descriptors)
|
|
transform_from = raw_stream
|
|
for ex in extensions:
|
|
if isinstance(ex, StreamTransformExtension):
|
|
transform_from = ex.transform_from(transform_from)
|
|
return transform_from
|
|
|
|
|
|
class FileSystemReader(StorageReader):
|
|
def __init__(
|
|
self,
|
|
path: Union[str, os.PathLike],
|
|
_extension_registry: Optional[ExtensionRegistry] = None, # EXPERIMENTAL
|
|
) -> None:
|
|
super().__init__()
|
|
self.fs = FileSystem()
|
|
self.path = self.fs.init_path(path)
|
|
self.storage_data: dict[Any, Any] = {}
|
|
self.load_id = _generate_uuid()
|
|
self.transforms = _StorageReaderTransforms(_extension_registry)
|
|
|
|
def _slice_file(self, file, sinfo: _StorageInfo) -> IO[bytes]:
|
|
return cast(IO[bytes], _create_file_view(file, sinfo.offset, sinfo.length))
|
|
|
|
def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
|
|
self.storage_data = {}
|
|
if checkpoint_id:
|
|
self.path = self.fs.init_path(checkpoint_id)
|
|
self.load_id = _generate_uuid()
|
|
|
|
def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
|
|
# group requests by file
|
|
per_file: dict[str, list[ReadItem]] = {}
|
|
for read_item in plan.items:
|
|
item_md: _StorageInfo = self.storage_data[read_item.storage_index]
|
|
path = item_md.relative_path
|
|
per_file.setdefault(path, []).append(read_item)
|
|
|
|
for relative_path, reqs in per_file.items():
|
|
new_path = self.fs.concat_path(self.path, relative_path)
|
|
with self.fs.create_stream(new_path, "rb") as stream:
|
|
# TODO sort by offset and cache the reading
|
|
for req in reqs:
|
|
item_md = self.storage_data[req.storage_index]
|
|
file_slice = self._slice_file(stream, item_md)
|
|
transform_from = self.transforms.transform_load_stream(
|
|
req,
|
|
# This field wasn't present in older
|
|
# implementations so provide a fallback.
|
|
item_md.transform_descriptors or (),
|
|
file_slice,
|
|
)
|
|
|
|
if req.type == LoadItemType.BYTE_IO:
|
|
read_bytes = io.BytesIO(transform_from.read(-1))
|
|
read_bytes.seek(0)
|
|
planner.load_bytes(req, read_bytes)
|
|
else:
|
|
if transform_from.seekable():
|
|
seekable = transform_from
|
|
else:
|
|
# torch.load requires a seekable input, so read the transform
|
|
# stream now and store the output if needed
|
|
seekable = io.BytesIO(transform_from.read(-1))
|
|
seekable.seek(0)
|
|
|
|
tensor = cast(
|
|
Tensor,
|
|
torch.load(
|
|
seekable,
|
|
map_location="cpu",
|
|
weights_only=True,
|
|
),
|
|
)
|
|
tensor = narrow_tensor_by_index(
|
|
tensor, req.storage_offsets, req.lengths
|
|
)
|
|
target_tensor = planner.resolve_tensor(req).detach()
|
|
|
|
assert target_tensor.size() == tensor.size(), (
|
|
f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
|
|
)
|
|
target_tensor.copy_(tensor)
|
|
planner.commit_tensor(req, target_tensor)
|
|
|
|
fut: Future = Future()
|
|
fut.set_result(None)
|
|
return fut
|
|
|
|
# Implementing the abstract function in StorageReader
|
|
def read_metadata(self) -> Metadata:
|
|
path = self.fs.concat_path(self.path, ".metadata")
|
|
with self.fs.create_stream(path, "rb") as metadata_file:
|
|
metadata = pickle.load(metadata_file)
|
|
|
|
if getattr(metadata, "storage_meta", None) is None:
|
|
metadata.storage_meta = StorageMeta()
|
|
metadata.storage_meta.load_id = self.load_id
|
|
|
|
return metadata
|
|
|
|
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
|
|
self.storage_data = metadata.storage_data
|
|
assert self.storage_data is not None
|
|
|
|
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
|
|
return plan
|
|
|
|
def prepare_global_plan(self, plans: list[LoadPlan]) -> list[LoadPlan]:
|
|
return plans
|
|
|
|
@property
|
|
def checkpoint_id(self) -> Union[str, os.PathLike]:
|
|
"""
|
|
return the checkpoint_id that will be used to load the checkpoint.
|
|
"""
|
|
return self.path
|
|
|
|
@classmethod
|
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
|
|
return FileSystem.validate_checkpoint_id(checkpoint_id)
|
|
|
|
|
|
class FileSystemWriter(_FileSystemWriter, BlockingAsyncStager):
|
|
"""
|
|
Basic implementation of StorageWriter using file IO.
|
|
|
|
This implementation makes the following assumptions and simplifications:
|
|
|
|
* The checkpoint path is an empty or non-existing directory.
|
|
* File creation is atomic
|
|
|
|
The checkpoint consist of one file per write request plus
|
|
a `.metadata` file with the serialized metadata.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, os.PathLike],
|
|
single_file_per_rank: bool = True,
|
|
sync_files: bool = True,
|
|
thread_count: int = 1,
|
|
per_thread_copy_ahead: int = 10_000_000,
|
|
cache_staged_state_dict: bool = False,
|
|
overwrite: bool = True,
|
|
_extensions: Optional[Sequence[StreamTransformExtension]] = None,
|
|
serialization_format: SerializationFormat = SerializationFormat.TORCH_SAVE,
|
|
) -> None:
|
|
"""
|
|
Initialize the writer pointing to `path`.
|
|
|
|
Args:
|
|
path: directory where the checkpoint will be written to.
|
|
single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
|
|
sync_files : force files to be synced to permanent storage. Default to True.
|
|
thread_count: Number of IO threads to use to write. Default to 1.
|
|
per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.
|
|
cache_staged_state_dict: Whether to cache the staged state_dict. This option decreases staging latency
|
|
at the cost of increases memory usage. Additionally, if this parameter is set to True, it's the expectation
|
|
that the stager is maintained and reused for multiple dcp.async_save calls. Default to False.
|
|
overwrite: Whether to allow overwriting existing checkpoints. Defaults to True.
|
|
_extensions: Extensions to apply to output streams (EXPERIMENTAL)
|
|
|
|
N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
|
|
"""
|
|
_FileSystemWriter.__init__(
|
|
self,
|
|
path=path,
|
|
single_file_per_rank=single_file_per_rank,
|
|
sync_files=sync_files,
|
|
thread_count=thread_count,
|
|
per_thread_copy_ahead=per_thread_copy_ahead,
|
|
overwrite=overwrite,
|
|
_extensions=_extensions,
|
|
serialization_format=serialization_format,
|
|
)
|
|
BlockingAsyncStager.__init__(
|
|
self,
|
|
cache_staged_state_dict=cache_staged_state_dict,
|
|
)
|
|
|
|
def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE:
|
|
"""Override of AsyncStager.stage"""
|
|
# in the async case, the state dict is already on CPU, so maintaining this
|
|
# buffer makes no sense
|
|
self.per_thread_copy_ahead = 0
|
|
return super().stage(state_dict)
|