mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Whenever you guard on something, you're supposed to tell GuardBuilder about it, so GuardBuilder knows that it has to actually bind it in scope when it creates the guard function. But shape env guards bypass that mechanism completely. Well, now they don't. For the most part, this didn't matter in practice, because we usually had a `TENSOR_MATCH` guard floating around that made sure that the guard stayed live. But if we ever eliminate those guards (e.g., because we build it into the shape guard directly; something we'll probably want to do when https://github.com/pytorch/pytorch/pull/89707 goes online) then this will indeed matter. One complication: some of the shape env guards are on globals. You have to make sure to shunt the usage to the correct guard builder in that case. Maybe it would be better if we refactored things so there is only one GuardBuilder. Not sure. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/91058 Approved by: https://github.com/voznesenskym
712 lines
25 KiB
Python
712 lines
25 KiB
Python
import collections
|
|
import logging
|
|
import math
|
|
import os
|
|
import re
|
|
import types
|
|
import weakref
|
|
from inspect import currentframe, getframeinfo
|
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union
|
|
from weakref import ReferenceType
|
|
|
|
import numpy as np
|
|
|
|
import sympy
|
|
|
|
import torch
|
|
|
|
from torch._guards import (
|
|
DuplicateInputs,
|
|
Guard,
|
|
GuardBuilderBase,
|
|
GuardEnvExpr,
|
|
GuardSource,
|
|
Source,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import FloorDiv
|
|
|
|
from . import config, convert_frame, mutation_guard
|
|
from .eval_frame import set_guard_error_hook, set_guard_fail_hook
|
|
from .exc import unimplemented
|
|
from .types import GuardedCode, GuardFail, GuardFn # noqa: F401
|
|
from .utils import (
|
|
dict_const_keys,
|
|
dict_param_key_ids,
|
|
guard_failures,
|
|
istype,
|
|
orig_code_map,
|
|
rename_implicit,
|
|
tuple_iterator_getitem,
|
|
tuple_iterator_len,
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
TensorGuards = torch._C._dynamo.guards.TensorGuards
|
|
check_obj_id = torch._C._dynamo.guards.check_obj_id
|
|
check_type_id = torch._C._dynamo.guards.check_type_id
|
|
|
|
|
|
CLOSURE_VARS = collections.OrderedDict(
|
|
[
|
|
("___check_type_id", check_type_id),
|
|
("___check_obj_id", check_obj_id),
|
|
("___is_grad_enabled", torch.is_grad_enabled),
|
|
("___odict_getitem", collections.OrderedDict.__getitem__),
|
|
("___dict_param_key_ids", dict_param_key_ids),
|
|
("___dict_const_keys", dict_const_keys),
|
|
("___tuple_iterator_len", tuple_iterator_len),
|
|
("___tuple_iterator_getitem", tuple_iterator_getitem),
|
|
("__math_isnan", math.isnan),
|
|
("inf", float("inf")),
|
|
]
|
|
)
|
|
|
|
|
|
def strip_function_call(name):
|
|
"""
|
|
"___odict_getitem(a, 1)" => "a"
|
|
"""
|
|
m = re.search(r"([a-z0-9_]+)\(([^(),]+)[^()]*\)", name)
|
|
if m and m.group(1) != "slice":
|
|
return strip_function_call(m.group(2))
|
|
return strip_getattr_getitem(name)
|
|
|
|
|
|
def strip_getattr_getitem(name):
|
|
"""
|
|
"a[1]" => "a"
|
|
"a.foo" => "a"
|
|
"""
|
|
return re.split(r"[.\[]", name)[0]
|
|
|
|
|
|
class GuardBuilder(GuardBuilderBase):
|
|
def __init__(
|
|
self,
|
|
id_ref: Callable[[Type[object]], str],
|
|
source_ref: Callable[[Source], str],
|
|
scope: Optional[Dict[str, object]],
|
|
guarded_code: "CheckFunctionManager",
|
|
renames=True,
|
|
):
|
|
self.id_ref = id_ref
|
|
self.source_ref = source_ref
|
|
if scope:
|
|
if renames:
|
|
scope = {rename_implicit(k): v for k, v in scope.items()}
|
|
else:
|
|
scope = dict()
|
|
self.scope: Dict[str, object] = scope
|
|
self.argnames: List[str] = []
|
|
# Code is python expression strings generated for each guard
|
|
self.code: List[str] = []
|
|
# shape_env_code is only used by local_builder and is used for
|
|
# shape env code. This exists only because we need to make sure
|
|
# shape env guards get run after tensor match guards (since the
|
|
# tensor match guards make sure we actually have tensors)
|
|
self.shape_env_code: List[str] = []
|
|
|
|
# Most of the time, we generate Python code in a guard to directly
|
|
# check various properties. However, tensors are a bit special;
|
|
# it is too slow to check their properties one-by-one in Python.
|
|
# Instead, there is a C++ function TensorGuards.check which takes
|
|
# all of the tensor arguments and checks them all against compile-time
|
|
# examples entirely in C++. Thus, every time we process a
|
|
# TENSOR_MATCH guard, we just add another entry to
|
|
# tensor_check_names/tensor_check_examples, saying "for this local,
|
|
# check it against this example", and it all ends up getting
|
|
# swept up into a single call to ___check_tensors. Invariant:
|
|
# len(tensor_check_names) == len(tensor_check_examples).
|
|
self.tensor_check_names: List[str] = []
|
|
self.tensor_check_examples: List[torch.Tensor] = []
|
|
|
|
self.tensor_check_ids: Dict[str, int] = {}
|
|
# TODO: tf is this naming
|
|
self.guarded_code: CheckFunctionManager = guarded_code
|
|
|
|
# Warning: use this with care! This lets you access what the current
|
|
# value of the value you are guarding on is. You probably don't want
|
|
# to actually durably save this value though (because it's specific
|
|
# to this frame!) Instead, you should be reading out some property
|
|
# (like its type) which is what you permanently install into the
|
|
# guard code.
|
|
def get(self, name: str) -> Any:
|
|
return eval(name, self.scope, CLOSURE_VARS)
|
|
|
|
# Registers the usage of the source name referenced by the
|
|
# string (or stored in the Guard) as being guarded upon. It's important
|
|
# to call this before generating some code that makes use of 'guard',
|
|
# because without this call, we won't actually bind the variable
|
|
# you reference in the actual guard closure (oops!)
|
|
def arg_ref(self, guard: Union[str, Guard]) -> str:
|
|
name: str
|
|
if isinstance(guard, str):
|
|
name = guard
|
|
else:
|
|
name = guard.name
|
|
base = strip_getattr_getitem(strip_function_call(name))
|
|
if base not in self.argnames:
|
|
if re.match(r"^\d+$", base):
|
|
log.warning(f"invalid var name: {guard}")
|
|
self.argnames.append(base)
|
|
|
|
return name
|
|
|
|
def TYPE_MATCH(self, guard: Guard):
|
|
# ___check_type_id is same as `id(type(x)) == y`
|
|
t = type(self.get(guard.name))
|
|
obj_id = self.id_ref(t)
|
|
code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
|
|
self._produce_guard_code(guard, [code])
|
|
|
|
def ID_MATCH(self, guard: Guard):
|
|
# ___check_obj_id is same as `id(x) == y`
|
|
m = re.match(r"^type\((.+)\)$", guard.name)
|
|
if m:
|
|
# optional optimization to produce cleaner/faster guard code
|
|
return self.TYPE_MATCH(
|
|
Guard(m.group(1), guard.source, GuardBuilder.TYPE_MATCH)
|
|
)
|
|
|
|
code = f"___check_obj_id({self.arg_ref(guard)}, {self.id_ref(self.get(guard.name))})"
|
|
self._produce_guard_code(guard, [code])
|
|
|
|
def NAME_MATCH(self, guard: Guard):
|
|
obj = self.get(guard.name)
|
|
code = f"{self.arg_ref(guard)}.__name__ == {obj.__name__}"
|
|
self._produce_guard_code(guard, [code])
|
|
|
|
def HASATTR(self, guard: Guard):
|
|
m = re.match(r"^(.*)[.]([a-zA-Z0-9_]+)$", guard.name)
|
|
assert m, f"invalid hasattr check {guard.name}"
|
|
base, attr = m.group(1, 2)
|
|
ref = self.arg_ref(base)
|
|
val = hasattr(self.get(base), attr)
|
|
code = None
|
|
if val:
|
|
code = f"hasattr({ref}, {attr!r})"
|
|
else:
|
|
code = f"not hasattr({ref}, {attr!r})"
|
|
|
|
self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base))
|
|
|
|
def EQUALS_MATCH(self, guard: Guard):
|
|
ref = self.arg_ref(guard)
|
|
val = self.get(guard.name)
|
|
t = type(val)
|
|
assert istype(
|
|
val,
|
|
(
|
|
int,
|
|
float,
|
|
bool,
|
|
type(None),
|
|
str,
|
|
type,
|
|
list,
|
|
tuple,
|
|
set,
|
|
slice,
|
|
frozenset,
|
|
range,
|
|
torch.Size,
|
|
torch.device,
|
|
torch.dtype,
|
|
np.int8,
|
|
np.int16,
|
|
np.int32,
|
|
np.int64,
|
|
np.uint8,
|
|
np.uint16,
|
|
np.uint32,
|
|
np.uint64,
|
|
),
|
|
), t.__name__
|
|
if istype(val, (torch.device, torch.dtype)):
|
|
# TODO(jansel): is this slow? perhaps optimize it
|
|
code = [f"str({ref}) == {str(val)!r}"]
|
|
self._produce_guard_code(guard, code)
|
|
return
|
|
|
|
# Special case for nan because float("nan") == float("nan") evaluates to False
|
|
if istype(val, float) and math.isnan(val):
|
|
code = list()
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
code.append(f"__math_isnan({ref})")
|
|
self._produce_guard_code(guard, code)
|
|
return
|
|
|
|
# Add type check to prevent equality check between tensor and non-tensor.
|
|
code = list()
|
|
if istype(val, (list, tuple)):
|
|
self.LIST_LENGTH(guard)
|
|
|
|
for idx, elem in enumerate(val):
|
|
code.append(
|
|
f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})"
|
|
)
|
|
|
|
elif not istype(val, torch.Size):
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
|
|
if istype(val, torch.Size):
|
|
val = tuple(val)
|
|
|
|
code.append(f"{ref} == {val!r}")
|
|
self._produce_guard_code(guard, code)
|
|
|
|
def CONSTANT_MATCH(self, guard: Guard):
|
|
val = self.get(guard.name)
|
|
if istype(val, (bool, type(None))):
|
|
self.ID_MATCH(guard)
|
|
else:
|
|
self.EQUALS_MATCH(guard)
|
|
|
|
def NN_MODULE(self, guard: Guard):
|
|
self.ID_MATCH(guard)
|
|
ref = self.arg_ref(guard)
|
|
val = self.get(guard.name)
|
|
|
|
def setup_guard():
|
|
assert istype(val.training, bool)
|
|
self.code.append(f"{ref}.training == {val.training}")
|
|
|
|
if hasattr(val, "training"):
|
|
# There are cases where a monkeypatched object has a guard made between __new__ and __init__
|
|
setup_guard()
|
|
else:
|
|
unimplemented(f"Guard setup for uninitialized class {type(val)}")
|
|
|
|
def FUNCTION_MATCH(self, guard: Guard):
|
|
"""things like torch.add and user defined functions"""
|
|
if guard.is_local():
|
|
return self.ID_MATCH(guard)
|
|
|
|
def BUILTIN_MATCH(self, guard: Guard):
|
|
return self.FUNCTION_MATCH(guard)
|
|
|
|
def PYMODULE_MATCH(self, guard: Guard):
|
|
return self.FUNCTION_MATCH(guard)
|
|
|
|
def LIST_LENGTH(self, guard):
|
|
ref = self.arg_ref(guard)
|
|
value = self.get(guard.name)
|
|
t = type(value)
|
|
|
|
code = list()
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
code.append(f"len({ref}) == {len(value)}")
|
|
|
|
self._produce_guard_code(guard, code)
|
|
|
|
def TUPLE_ITERATOR_LEN(self, guard):
|
|
ref = self.arg_ref(guard)
|
|
value = self.get(guard.name)
|
|
t = type(value)
|
|
|
|
code = list()
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")
|
|
|
|
self._produce_guard_code(guard, code)
|
|
|
|
def DICT_KEYS(self, guard):
|
|
ref = self.arg_ref(guard)
|
|
value = self.get(guard.name)
|
|
t = type(value)
|
|
|
|
code = list()
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
param_key_ids = set(dict_param_key_ids(value))
|
|
const_keys = set(dict_const_keys(value))
|
|
if param_key_ids:
|
|
code.append(f"___dict_param_key_ids({ref}) == {param_key_ids!r}")
|
|
code.append(f"___dict_const_keys({ref}) == {const_keys!r}")
|
|
else:
|
|
code.append(f"set({ref}.keys()) == {const_keys!r}")
|
|
|
|
self._produce_guard_code(guard, code)
|
|
|
|
def WEAKREF_ALIVE(self, guard):
|
|
self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"])
|
|
|
|
def NN_MODULE_PARAM_NAMES(self, guard):
|
|
ref = self.arg_ref(guard)
|
|
value = self.get(guard.name)
|
|
t = type(value)
|
|
keys = {k for k, v in value.named_parameters()}
|
|
|
|
code = list()
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}")
|
|
|
|
self._produce_guard_code(guard, code)
|
|
|
|
def ODICT_KEYS(self, guard):
|
|
"""OrderedDict keys match"""
|
|
ref = self.arg_ref(guard)
|
|
value = self.get(guard.name)
|
|
t = type(value)
|
|
|
|
code = list()
|
|
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
|
|
code.append(f"str({ref}.keys()) == {str(value.keys())!r}")
|
|
|
|
self._produce_guard_code(guard, code)
|
|
|
|
def OBJECT_MUTATION(self, guard: Guard):
|
|
mutation_guard.watch(self.get(guard.name), self.guarded_code)
|
|
|
|
def GRAD_MODE(self, guard: Guard):
|
|
"""Guard on the initial grad state"""
|
|
assert guard.name == ""
|
|
assert guard.source is GuardSource.GLOBAL
|
|
code = None
|
|
if convert_frame.initial_grad_state:
|
|
code = "___is_grad_enabled()"
|
|
else:
|
|
code = "not ___is_grad_enabled()"
|
|
self._produce_guard_code(guard, [code])
|
|
|
|
def SHAPE_ENV(self, guard: Guard):
|
|
# Let's handle ShapeEnv guards. To do this, we will resolve
|
|
# shape variables to sources from tracked_fakes. This must happen after
|
|
# tensor checks.
|
|
assert guard.name == ""
|
|
output_graph = self.guarded_code.output_graph
|
|
# NB: self.output_graph can be None in the debug_nops tests
|
|
fs = output_graph.tracked_fakes
|
|
code = output_graph.shape_env.codegen_guards(
|
|
[a.fake for a in fs],
|
|
[a.source for a in fs],
|
|
source_ref=self.source_ref,
|
|
)
|
|
if code != "True":
|
|
self._produce_guard_code(guard, [code], shape_env=True)
|
|
|
|
def TENSOR_MATCH(self, guard: Guard):
|
|
if guard.is_nn_module():
|
|
self.ID_MATCH(guard)
|
|
else:
|
|
value = self.get(guard.name)
|
|
assert isinstance(value, torch.Tensor)
|
|
tensor_name = self.arg_ref(guard)
|
|
self.tensor_check_names.append(tensor_name)
|
|
self.tensor_check_examples.append(value)
|
|
|
|
# STOP - DO NOT USE id_ref FOR TENSORS - TENSOR INVALIDATION RULES DIFFER
|
|
self.tensor_check_ids[tensor_name] = id(value)
|
|
|
|
# Note: Guard code produced for tensor_match is a little different.
|
|
# We accumulate tensor names, then do a single install of `___check_tensors`.
|
|
# See _guards.cpp and TensorGuard for more information.
|
|
# TODO(voz): Add tensor matching code to export
|
|
# Note: this is a bit of a special case, and so does not use _produce_guard_code
|
|
guard.set_export_info(
|
|
"TENSOR_MATCH",
|
|
weakref.ref(type(value)),
|
|
None,
|
|
weakref.ref(value),
|
|
)
|
|
|
|
# A util that appends guarded code, or, in the case of export, adds data onto guards
|
|
def _produce_guard_code(
|
|
self, guard, code_list, provided_guarded_object=None, shape_env=False
|
|
):
|
|
# WARNING: It is important that cur_frame/caller do NOT stay in
|
|
# the current frame, because they will keep things live longer
|
|
# than they should. See TestMisc.test_release_module_memory
|
|
cur_frame = currentframe()
|
|
assert cur_frame is not None
|
|
caller = cur_frame.f_back
|
|
del cur_frame
|
|
assert caller is not None
|
|
func_name = getframeinfo(caller)[2]
|
|
del caller
|
|
# We use func_name for export, so might as well get a nice defensive check out of it
|
|
assert func_name in dir(
|
|
self.__class__
|
|
), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"
|
|
|
|
if shape_env:
|
|
self.shape_env_code.extend(code_list)
|
|
else:
|
|
self.code.extend(code_list)
|
|
|
|
# Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
|
|
if provided_guarded_object is None:
|
|
name_valid = guard.name is not None and guard.name != ""
|
|
|
|
guarded_object = self.get(guard.name) if name_valid else None
|
|
else:
|
|
guarded_object = provided_guarded_object
|
|
|
|
guarded_object_type = (
|
|
weakref.ref(type(guarded_object)) if guarded_object is not None else None
|
|
)
|
|
obj_ref = None
|
|
if hasattr(guarded_object.__class__, "__weakref__"):
|
|
obj_ref = weakref.ref(guarded_object)
|
|
|
|
guard.set_export_info(
|
|
func_name,
|
|
guarded_object_type,
|
|
code_list,
|
|
obj_ref,
|
|
)
|
|
|
|
|
|
# NB: Naively, you'd expect this to only be a function that produces
|
|
# the callable that consistutes the guard. However, there is some
|
|
# delicate handling for invalidating this check function when the
|
|
# locals/globals get invalidated, so there's some extra state
|
|
# we have to hold in this manager class.
|
|
#
|
|
# TODO: this object has reference cycle with itself, via check_fn which
|
|
# references back to CheckFunction via ___guarded_code in closure_vars.
|
|
# Ideally, there shouldn't be any ref cycle so that guards are
|
|
# promptly disposed of.
|
|
class CheckFunctionManager:
|
|
def __init__(
|
|
self,
|
|
output_graph=None,
|
|
f_locals: Optional[Dict[str, object]] = None,
|
|
f_globals: Optional[Dict[str, object]] = None,
|
|
guard_fail_fn: Optional[Callable[[Tuple[str, str]], None]] = None,
|
|
):
|
|
guards = output_graph.guards if output_graph else None
|
|
self.valid = True
|
|
self._weakrefs: List["ReferenceType[object]"] = []
|
|
self._seen_ids: Set[int] = set()
|
|
self.output_graph = output_graph
|
|
|
|
# Note: right overrides left
|
|
def combine_scopes(left, right):
|
|
if left is None:
|
|
return right
|
|
|
|
if right is None:
|
|
return left
|
|
|
|
return {**left, **right}
|
|
|
|
def source_ref(source):
|
|
guard_source = source.guard_source()
|
|
if guard_source is GuardSource.CONSTANT:
|
|
# No need to track constants
|
|
return source.name()
|
|
builder = guard_source.select(w_local(), w_global())
|
|
assert builder is not None
|
|
return builder.arg_ref(source.name())
|
|
|
|
local_builder = GuardBuilder(
|
|
self.id_ref,
|
|
source_ref,
|
|
combine_scopes(f_globals, f_locals),
|
|
self,
|
|
renames=True,
|
|
)
|
|
global_builder = GuardBuilder(
|
|
self.id_ref, source_ref, f_globals, self, renames=False
|
|
)
|
|
# source_ref can cause a cycle, make sure we break it with weakref
|
|
w_local = weakref.ref(local_builder)
|
|
w_global = weakref.ref(global_builder)
|
|
for guard in sorted(guards or [], key=Guard.sort_key):
|
|
if not config.guard_nn_modules and guard.is_nn_module():
|
|
continue
|
|
guard.create(local_builder, global_builder)
|
|
self.check_fn = self.compile_check_fn(
|
|
local_builder, global_builder, guards, guard_fail_fn
|
|
)
|
|
self._seen_ids.clear()
|
|
|
|
def compile_check_fn(
|
|
self, local_builder, global_builder, guards_out, guard_fail_fn
|
|
):
|
|
assert not (set(local_builder.argnames) & set(global_builder.argnames))
|
|
# see parallel handling of ".0" / "___implicit0" in _eval_frame.c
|
|
largs = [a for a in local_builder.scope.keys() if a == "___implicit0"]
|
|
largs += [a for a in local_builder.argnames if a != "___implicit0"]
|
|
largs += ["**___kwargs_ignored"]
|
|
args = ",".join(largs)
|
|
|
|
code_parts = (
|
|
["___guarded_code.valid"] + local_builder.code + global_builder.code
|
|
)
|
|
# TODO(whc) maybe only the 'check_tensors' one is ambiguous? if so we can be less general..
|
|
verbose_code_parts = (
|
|
["___guarded_code.valid"] + local_builder.code + global_builder.code
|
|
)
|
|
|
|
tensor_check_names = (
|
|
local_builder.tensor_check_names + global_builder.tensor_check_names
|
|
)
|
|
|
|
tensor_check_ids = local_builder.tensor_check_ids.copy()
|
|
tensor_check_ids.update(global_builder.tensor_check_ids)
|
|
|
|
check_tensors_fn = None
|
|
check_tensors_verbose_fn = None
|
|
if tensor_check_names:
|
|
tensor_check_examples = (
|
|
local_builder.tensor_check_examples
|
|
+ global_builder.tensor_check_examples
|
|
)
|
|
tensor_guards = TensorGuards(
|
|
*tensor_check_examples, dynamic_shapes=config.dynamic_shapes
|
|
)
|
|
check_tensors_fn = tensor_guards.check
|
|
check_tensors_verbose_fn = tensor_guards.check_verbose
|
|
code_parts.append(f"___check_tensors({', '.join(tensor_check_names)})")
|
|
verbose_args = ", ".join(
|
|
tensor_check_names + ["tensor_check_names=tensor_check_names"]
|
|
)
|
|
verbose_code_parts.append(f"___check_tensors_verbose({verbose_args})")
|
|
|
|
aotautograd_guards: List[GuardEnvExpr] = (
|
|
self.output_graph.tracing_context.guards_context.aotautograd_guards
|
|
if self.output_graph
|
|
else []
|
|
)
|
|
for guard in aotautograd_guards:
|
|
if isinstance(guard, DuplicateInputs):
|
|
pos_a = guard.input_pos_a
|
|
pos_b = guard.input_pos_b
|
|
assert pos_b < len(self.output_graph.graphargs) and pos_a < len(
|
|
self.output_graph.graphargs
|
|
), "Deduped args out of bounds"
|
|
assert self.output_graph.graphargs[
|
|
pos_a
|
|
].is_tensor, "Deduped arg must be a tensor"
|
|
assert self.output_graph.graphargs[
|
|
pos_b
|
|
].is_tensor, "Deduped arg must be a tensor"
|
|
|
|
code_part = f"{self.output_graph.graphargs[pos_a].source.name()} is {self.output_graph.graphargs[pos_b].source.name()}" # noqa: B950
|
|
code_parts.append(code_part)
|
|
verbose_code_parts.append(code_part)
|
|
else:
|
|
raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")
|
|
|
|
code_parts.extend(local_builder.shape_env_code)
|
|
verbose_code_parts.extend(local_builder.shape_env_code)
|
|
assert not global_builder.shape_env_code
|
|
|
|
def direct_equality(a, b):
|
|
return a == b
|
|
|
|
def direct_negation(a, b):
|
|
return not direct_equality(a, b)
|
|
|
|
code = " and ".join(unique(code_parts))
|
|
closure_vars = collections.OrderedDict(
|
|
[
|
|
("___guarded_code", self),
|
|
("___check_tensors", check_tensors_fn),
|
|
("___check_tensors_verbose", check_tensors_verbose_fn),
|
|
("tensor_check_names", tensor_check_names),
|
|
("floor", math.floor),
|
|
("ceiling", math.ceil),
|
|
("Eq", direct_equality),
|
|
("Ne", direct_negation),
|
|
("Mod", sympy.Mod),
|
|
("FloorDiv", FloorDiv),
|
|
]
|
|
)
|
|
closure_vars.update(CLOSURE_VARS)
|
|
py_code = f"""\
|
|
def ___make_guard_fn({','.join(closure_vars.keys())}):
|
|
return lambda {args}: {code}
|
|
"""
|
|
if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1":
|
|
print("GUARDS", code)
|
|
set_guard_fail_hook(guard_fail_hook)
|
|
out: Dict[str, Any] = dict()
|
|
# print("RUNNING PY CODE", py_code)
|
|
exec(py_code, global_builder.scope, out)
|
|
guard_fn = out["___make_guard_fn"](*closure_vars.values())
|
|
guard_fn.closure_vars = closure_vars
|
|
# TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both
|
|
guard_fn.args = largs
|
|
guard_fn.code_parts = code_parts
|
|
guard_fn.verbose_code_parts = verbose_code_parts
|
|
guard_fn.global_scope = global_builder.scope
|
|
guard_fn.guard_fail_fn = guard_fail_fn
|
|
return guard_fn
|
|
|
|
def invalidate(self, ref):
|
|
# A weakref is no longer valid, self.check_fn should return false
|
|
self.valid = False
|
|
|
|
def id_ref(self, obj):
|
|
"""add a weakref, return the id"""
|
|
try:
|
|
if id(obj) not in self._seen_ids:
|
|
self._weakrefs.append(weakref.ref(obj, self.invalidate))
|
|
self._seen_ids.add(id(obj))
|
|
except TypeError:
|
|
pass # cannot weakref bool object
|
|
return id(obj)
|
|
|
|
|
|
def guard_fail_hook(
|
|
guard_fn: GuardFn, code: types.CodeType, f_locals: Dict[str, object], last: bool
|
|
) -> None:
|
|
"""
|
|
called whenever a guard fails.
|
|
"""
|
|
if not guard_fn.guard_fail_fn and not last:
|
|
return
|
|
scope = {rename_implicit(k): v for k, v in f_locals.items()}
|
|
scope.update(guard_fn.closure_vars)
|
|
reason = None
|
|
for part in guard_fn.verbose_code_parts:
|
|
fail_reason = eval(part, guard_fn.global_scope, scope)
|
|
# TODO(whc) hacky for now as not every 'part' in guard_fn.verbose_code_parts
|
|
# is updated to return a string explaining the failure.
|
|
if isinstance(fail_reason, str):
|
|
reason = fail_reason
|
|
break
|
|
elif isinstance(fail_reason, bool) and not fail_reason:
|
|
reason = part
|
|
break
|
|
try:
|
|
if guard_fn.guard_fail_fn is not None:
|
|
guard_fn.guard_fail_fn(
|
|
GuardFail(reason or "unknown reason", orig_code_map[code])
|
|
)
|
|
except Exception as e:
|
|
log.error(
|
|
"Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
|
|
exc_info=True,
|
|
)
|
|
|
|
if last:
|
|
guard_failures[orig_code_map[code]].append(reason)
|
|
|
|
|
|
def guard_error_hook(
|
|
guard_fn: GuardFn, code: types.CodeType, f_locals: Dict[str, object], last: bool
|
|
):
|
|
print(
|
|
f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
|
|
)
|
|
# TODO: If we passed in the exception here, we could get a precise
|
|
# column number of which subexpression failed. But that would also
|
|
# require us to have the TRUE code that was eval'ed, not a shoddy
|
|
# reconstruction (like is done here)
|
|
print("lambda " + ", ".join(guard_fn.args) + ":")
|
|
print(" ", " and\n ".join(guard_fn.code_parts))
|
|
|
|
|
|
set_guard_error_hook(guard_error_hook)
|
|
|
|
|
|
def unique(seq):
|
|
seen = set()
|
|
for x in seq:
|
|
if x not in seen:
|
|
yield x
|
|
seen.add(x)
|