mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Add to the Tensor doc info about `.device`, `.is_cuda`, `.requires_grad`, `.is_leaf` and `.grad`. Update the `register_backward_hook` doc with a warning stating that it does not work in all cases. Add support in the `_add_docstr` function to add docstring to attributes. There is an explicit cast here but I am not sure how to handle it properly. The thing is that the doc field for getsetdescr is written as being a const char * (as all other doc fields in descriptors objects) in cpython online documentation. But in the code, it is the only one that is not const. I assumed here that it is a bug in the code because it does not follow the doc and the convention of the others descriptors and so I cast out the const. EDIT: the online doc I was looking at is for 3.7 and in that version both the code and the doc are const. For older versions, both are non const. Please let me know if this should not be done. And if it should be done if there is a cleaner way to do it ! Pull Request resolved: https://github.com/pytorch/pytorch/pull/14339 Differential Revision: D13243266 Pulled By: ezyang fbshipit-source-id: 75b7838f7cd6c8dc72b0c61950e7a971baefaeeb
678 lines
23 KiB
C++
678 lines
23 KiB
C++
#include "torch/csrc/python_headers.h"
|
|
#include <sys/types.h>
|
|
|
|
#ifndef _MSC_VER
|
|
#include <sys/socket.h>
|
|
#endif
|
|
|
|
#include <stdbool.h>
|
|
#include <unordered_map>
|
|
#include <cstdlib>
|
|
#include <libshm.h>
|
|
#include <TH/TH.h>
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <ATen/dlpack.h>
|
|
#include <ATen/DLConvertor.h>
|
|
#include <ATen/Utils.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include "THP.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Device.h"
|
|
#include "torch/csrc/Dtype.h"
|
|
#include "torch/csrc/DataLoader.h"
|
|
#include "torch/csrc/Generator.h"
|
|
#include "torch/csrc/Layout.h"
|
|
#include "torch/csrc/TypeInfo.h"
|
|
#include "torch/csrc/autograd/generated/python_nn_functions.h"
|
|
#include "torch/csrc/autograd/python_legacy_variable.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/tensor/python_tensor.h"
|
|
#include "torch/csrc/utils/tensor_dtypes.h"
|
|
#include "torch/csrc/utils/python_strings.h"
|
|
#include "torch/csrc/utils/tensor_layouts.h"
|
|
#include "torch/csrc/utils/tensor_numpy.h"
|
|
#include "torch/csrc/jit/python_tracer.h"
|
|
#include "torch/csrc/jit/init.h"
|
|
#include "torch/csrc/jit/python_ir.h"
|
|
#include "torch/csrc/onnx/init.h"
|
|
|
|
#ifdef USE_CUDNN
|
|
#include "cudnn.h"
|
|
#endif
|
|
|
|
#ifdef USE_DISTRIBUTED
|
|
#ifdef USE_C10D
|
|
#include "torch/csrc/distributed/c10d/c10d.h"
|
|
#endif
|
|
#endif
|
|
|
|
#define WITH_NUMPY_IMPORT_ARRAY
|
|
#include "torch/csrc/utils/numpy_stub.h"
|
|
|
|
namespace py = pybind11;
|
|
|
|
PyObject* module;
|
|
|
|
THPGenerator *THPDefaultGenerator = nullptr;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static PyObject * THPModule_initNames(PyObject *self, PyObject *arg)
|
|
{
|
|
static std::vector<std::string> names;
|
|
|
|
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
|
|
if (!types) return nullptr;
|
|
|
|
int num_classes = PySequence_Fast_GET_SIZE(types.get());
|
|
names.reserve(names.size() + num_classes);
|
|
for (int i = 0; i < num_classes; i++) {
|
|
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
|
|
THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject");
|
|
PyTypeObject* type = (PyTypeObject*)obj;
|
|
|
|
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
|
|
if (!module_name) return nullptr;
|
|
THPUtils_assert(THPUtils_checkString(module_name.get()),
|
|
"expected __module__ to be a string");
|
|
std::string name = THPUtils_unpackString(module_name.get());
|
|
names.push_back(name + "." + type->tp_name);
|
|
type->tp_name = names.back().c_str();
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
//
|
|
// Callback for python part. Used for additional initialization of python classes
|
|
static PyObject * THPModule_initExtension(PyObject *_unused, PyObject *shm_manager_path)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
if (!THPUtils_checkString(shm_manager_path)) {
|
|
THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!");
|
|
return nullptr;
|
|
}
|
|
torch::utils::initializeLayouts();
|
|
torch::utils::initializeDtypes();
|
|
torch::tensors::initialize_python_bindings();
|
|
std::string path = THPUtils_unpackString(shm_manager_path);
|
|
libshm_init(path.c_str());
|
|
|
|
auto module = THPObjectPtr(PyImport_ImportModule("torch"));
|
|
if (!module) throw python_error();
|
|
|
|
THPDoubleStorage_postInit(module);
|
|
THPFloatStorage_postInit(module);
|
|
THPHalfStorage_postInit(module);
|
|
THPLongStorage_postInit(module);
|
|
THPIntStorage_postInit(module);
|
|
THPShortStorage_postInit(module);
|
|
THPCharStorage_postInit(module);
|
|
THPByteStorage_postInit(module);
|
|
THPAutograd_initFunctions();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// The idea behind these two functions is to make it easy to test if we are
|
|
// built with ASAN: they're designed not to crash if ASAN is not enabled, but
|
|
// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
|
|
// checks if our build environment is misconfigured.
|
|
|
|
static PyObject * THPModule_crashIfCsrcASAN(PyObject *module, PyObject *arg) {
|
|
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_asan expects an int, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
volatile char x[3];
|
|
x[static_cast<int>(THPUtils_unpackLong(arg))] = 0;
|
|
return PyLong_FromLong(x[0]);
|
|
}
|
|
|
|
static PyObject * THPModule_crashIfCsrcUBSAN(PyObject *module, PyObject *arg) {
|
|
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_ubsan expects an int, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
int32_t x = static_cast<int>(THPUtils_unpackLong(arg));
|
|
double y = 1.0 / x;
|
|
return PyLong_FromLong((int)y);
|
|
}
|
|
|
|
static PyObject * THPModule_crashIfATenASAN(PyObject *module, PyObject *arg) {
|
|
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_aten_asan expects an int, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
return PyLong_FromLong(at::_crash_if_asan(static_cast<int>(THPUtils_unpackLong(arg))));
|
|
}
|
|
|
|
static PyObject * THPModule_getNumThreads(PyObject *module)
|
|
{
|
|
return PyLong_FromLong(THGetNumThreads());
|
|
}
|
|
|
|
static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg)
|
|
{
|
|
THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
THSetNumThreads((int)THPUtils_unpackLong(arg));
|
|
at::set_num_threads((int)THPUtils_unpackLong(arg));
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
torch::tensors::py_set_default_tensor_type(type);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THPModule_setDefaultDtype(PyObject *_unused, PyObject *dtype)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
torch::tensors::py_set_default_dtype(dtype);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPModule_safeCall(PyObject *_unused, PyObject *args, PyObject *kwargs)
|
|
{
|
|
PyObject *result = nullptr;
|
|
PyObject *args_slice = nullptr;
|
|
PyThreadState *thread_state = PyThreadState_Get();
|
|
Py_ssize_t num_args = args ? PyTuple_Size(args) : 0;
|
|
THPUtils_assert(num_args > 0, "expected at least one argument");
|
|
try {
|
|
args_slice = PyTuple_GetSlice(args, 1, num_args);
|
|
result = PyObject_Call(PyTuple_GET_ITEM(args, 0), args_slice, kwargs);
|
|
} catch (std::exception &e) {
|
|
PyEval_RestoreThread(thread_state);
|
|
Py_DECREF(args_slice);
|
|
PyErr_SetString(THPException_FatalError, e.what());
|
|
Py_LeaveRecursiveCall();
|
|
}
|
|
Py_DECREF(args_slice);
|
|
return result;
|
|
}
|
|
|
|
PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args)
|
|
{
|
|
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
|
|
static std::vector<std::string> all_docs;
|
|
PyObject *obj;
|
|
PyObject *doc_obj;
|
|
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
|
|
return nullptr;
|
|
}
|
|
|
|
const char* doc_str = "<invalid string>";
|
|
if (THPUtils_checkString(doc_obj)) {
|
|
all_docs.push_back(THPUtils_unpackString(doc_obj));
|
|
doc_str = all_docs.back().c_str();
|
|
}
|
|
|
|
if (Py_TYPE(obj) == &PyCFunction_Type) {
|
|
PyCFunctionObject* f = (PyCFunctionObject *)obj;
|
|
if (f->m_ml->ml_doc) {
|
|
return PyErr_Format(PyExc_RuntimeError,
|
|
"function '%s' already has a docstring", f->m_ml->ml_name);
|
|
}
|
|
f->m_ml->ml_doc = doc_str;
|
|
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
|
|
PyMethodDescrObject* m = (PyMethodDescrObject *)obj;
|
|
if (m->d_method->ml_doc) {
|
|
return PyErr_Format(PyExc_RuntimeError,
|
|
"method '%s' already has a docstring", m->d_method->ml_name);
|
|
}
|
|
m->d_method->ml_doc = doc_str;
|
|
} else if (strcmp(Py_TYPE(obj)->tp_name, "getset_descriptor") == 0) {
|
|
//NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
|
|
PyGetSetDescrObject* m = (PyGetSetDescrObject *)obj;
|
|
if (m->d_getset->doc) {
|
|
//NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
|
|
return PyErr_Format(PyExc_RuntimeError,
|
|
"attribute '%s' already has a docstring", m->d_getset->name);
|
|
}
|
|
// This field is not const for python < 3.7 yet the content is
|
|
// never modified.
|
|
//NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
m->d_getset->doc = const_cast<char *>(doc_str);
|
|
} else {
|
|
return PyErr_Format(PyExc_TypeError,
|
|
"don't know how to add docstring to type '%s'", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
|
|
PyObject *THPModule_inferSize(PyObject *_unused, PyObject *args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
Py_ssize_t num_args = args ? (Py_ssize_t) PyTuple_Size(args) : 0;
|
|
THPUtils_assert(num_args == 2, "expected exactly 2 arguments");
|
|
PyObject *arg1 = PyTuple_GET_ITEM(args, 0);
|
|
THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1");
|
|
PyObject *arg2 = PyTuple_GET_ITEM(args, 1);
|
|
THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2");
|
|
|
|
auto size1 = THPUtils_unpackLongs(arg1);
|
|
auto size2 = THPUtils_unpackLongs(arg2);
|
|
auto sizes = at::infer_size(size1, size2);
|
|
return THPSize_NewFromSizes(sizes.size(), sizes.data());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject *THPModule_setBackcompatBroadcastWarn(PyObject *module, PyObject *arg) {
|
|
THPUtils_assert(PyBool_Check(arg), "set_backcompat_broadcast_warn expects a bool, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
setBackCompatBroadcastWarn(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject *THPModule_getBackcompatBroadcastWarn(PyObject *module)
|
|
{
|
|
if (getBackCompatBroadcastWarn()) Py_RETURN_TRUE;
|
|
else Py_RETURN_FALSE;
|
|
}
|
|
|
|
static PyObject *THPModule_setBackcompatKeepdimWarn(PyObject *module, PyObject *arg) {
|
|
THPUtils_assert(PyBool_Check(arg), "set_backcompat_keepdim_warn expects a bool, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
setBackCompatKeepdimWarn(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject *THPModule_getBackcompatKeepdimWarn(PyObject *module)
|
|
{
|
|
if (getBackCompatKeepdimWarn()) Py_RETURN_TRUE;
|
|
else Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject *THPModule_hasDistributed(PyObject *_unused)
|
|
{
|
|
#ifdef USE_DISTRIBUTED
|
|
Py_RETURN_TRUE;
|
|
#else
|
|
Py_RETURN_FALSE;
|
|
#endif
|
|
}
|
|
|
|
void DLPack_Capsule_Destructor(PyObject* data) {
|
|
HANDLE_TH_ERRORS
|
|
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
|
|
if (dlMTensor) {
|
|
// the dlMTensor has not been consumed, call deleter ourselves
|
|
dlMTensor->deleter(const_cast<DLManagedTensor*>(dlMTensor));
|
|
} else {
|
|
// the dlMTensor has been consumed
|
|
// PyCapsule_GetPointer has set an error indicator
|
|
PyErr_Clear();
|
|
}
|
|
END_HANDLE_TH_ERRORS_RET()
|
|
}
|
|
|
|
PyObject *THPModule_toDLPack(PyObject *_unused, PyObject *data)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPVariable_Check(data), "data must be a Tensor");
|
|
DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_UnpackData(data));
|
|
return PyCapsule_New(dlMTensor, "dltensor", DLPack_Capsule_Destructor);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPModule_fromDLPack(PyObject *_unused, PyObject *data)
|
|
{
|
|
using namespace torch::autograd;
|
|
HANDLE_TH_ERRORS
|
|
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
|
|
THPUtils_assert(dlMTensor, "from_dlpack received an invalid capsule. "
|
|
"Note that DLTensor capsules can be consumed only once, "
|
|
"so you might have already constructed a tensor from it once.")
|
|
// atensor steals the ownership of the underlying storage. It also passes a
|
|
// destructor function that will be called when the underlying storage goes
|
|
// out of scope. When the destructor is called, the dlMTensor is destructed too.
|
|
auto atensor = make_variable(at::fromDLPack(dlMTensor), false);
|
|
|
|
// It is possible that the call to at::fromDLPack is the very first
|
|
// call to create a Tensor in PyTorch. If so, then _lazy_init has
|
|
// not been called, and the attempt to call createPyObject will fail
|
|
// because cuda ATen types have not been registered in Python yet.
|
|
// so if we have a cuda tensor, then we need to make sure
|
|
// we have called _lazy_init here
|
|
if(atensor.is_cuda()) {
|
|
py::module::import("torch.cuda").attr("init")();
|
|
}
|
|
// Make sure this capsule will never be used again.
|
|
PyCapsule_SetName(data, "used_dltensor");
|
|
return THPVariable_Wrap(std::move(atensor));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPModule_setUserEnabledCuDNN(PyObject *_unused, PyObject *arg)
|
|
{
|
|
THPUtils_assert(PyBool_Check(arg), "set_enabled_cudnn expects a bool, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
at::globalContext().setUserEnabledCuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject *THPModule_userEnabledCuDNN(PyObject *_unused)
|
|
{
|
|
if (at::globalContext().userEnabledCuDNN()) Py_RETURN_TRUE;
|
|
else Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject *THPModule_setDeterministicCuDNN(PyObject *_unused, PyObject *arg)
|
|
{
|
|
THPUtils_assert(PyBool_Check(arg), "set_deterministic_cudnn expects a bool, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
at::globalContext().setDeterministicCuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject *THPModule_deterministicCuDNN(PyObject *_unused)
|
|
{
|
|
if (at::globalContext().deterministicCuDNN()) Py_RETURN_TRUE;
|
|
else Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject *THPModule_setBenchmarkCuDNN(PyObject *_unused, PyObject *arg)
|
|
{
|
|
THPUtils_assert(PyBool_Check(arg), "set_benchmark_cudnn expects a bool, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
at::globalContext().setBenchmarkCuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject *THPModule_benchmarkCuDNN(PyObject *_unused)
|
|
{
|
|
if (at::globalContext().benchmarkCuDNN()) Py_RETURN_TRUE;
|
|
else Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject *THPModule_setFlushDenormal(PyObject *_unused, PyObject *arg) {
|
|
THPUtils_assert(PyBool_Check(arg), "flush_denormal expects a bool, "
|
|
"but got %s", THPUtils_typename(arg));
|
|
if (!at::globalContext().setFlushDenormal(arg == Py_True)) {
|
|
Py_RETURN_FALSE;
|
|
};
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject *THPModule_getDefaultDtype(PyObject *_unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
auto& type = torch::tensors::get_default_tensor_type();
|
|
auto dtype = (PyObject*)torch::getDtype(type.scalarType());
|
|
Py_INCREF(dtype);
|
|
return dtype;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPModule_isDefaultTypeCuda(PyObject *_unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (torch::tensors::get_default_tensor_type().is_cuda()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyMethodDef TorchMethods[] = {
|
|
{"_initExtension", (PyCFunction)THPModule_initExtension, METH_O, nullptr},
|
|
{"_autograd_init", (PyCFunction)THPAutograd_initExtension, METH_NOARGS, nullptr},
|
|
{"_add_docstr", (PyCFunction)THPModule_addDocStr, METH_VARARGS, nullptr},
|
|
{"_init_names", (PyCFunction)THPModule_initNames, METH_O, nullptr},
|
|
{"_has_distributed",(PyCFunction)THPModule_hasDistributed, METH_NOARGS, nullptr},
|
|
{"_safe_call", (PyCFunction)THPModule_safeCall, METH_VARARGS | METH_KEYWORDS, nullptr},
|
|
{"_set_default_tensor_type", (PyCFunction)THPModule_setDefaultTensorType, METH_O, nullptr},
|
|
{"_set_default_dtype", (PyCFunction)THPModule_setDefaultDtype, METH_O, nullptr},
|
|
{"_infer_size", (PyCFunction)THPModule_inferSize, METH_VARARGS, nullptr},
|
|
{"_crash_if_csrc_asan", (PyCFunction)THPModule_crashIfCsrcASAN, METH_O, nullptr},
|
|
{"_crash_if_csrc_ubsan", (PyCFunction)THPModule_crashIfCsrcUBSAN, METH_O, nullptr},
|
|
{"_crash_if_aten_asan", (PyCFunction)THPModule_crashIfATenASAN, METH_O, nullptr},
|
|
{"_set_backcompat_broadcast_warn", (PyCFunction)THPModule_setBackcompatBroadcastWarn, METH_O, nullptr},
|
|
{"_get_backcompat_broadcast_warn", (PyCFunction)THPModule_getBackcompatBroadcastWarn, METH_NOARGS, nullptr},
|
|
{"_set_backcompat_keepdim_warn", (PyCFunction)THPModule_setBackcompatKeepdimWarn, METH_O, nullptr},
|
|
{"_get_backcompat_keepdim_warn", (PyCFunction)THPModule_getBackcompatKeepdimWarn, METH_NOARGS, nullptr},
|
|
{"get_num_threads", (PyCFunction)THPModule_getNumThreads, METH_NOARGS, nullptr},
|
|
{"set_num_threads", (PyCFunction)THPModule_setNumThreads, METH_O, nullptr},
|
|
{"_get_cudnn_enabled", (PyCFunction)THPModule_userEnabledCuDNN, METH_NOARGS, nullptr},
|
|
{"_set_cudnn_enabled", (PyCFunction)THPModule_setUserEnabledCuDNN, METH_O, nullptr},
|
|
{"_get_cudnn_benchmark", (PyCFunction)THPModule_benchmarkCuDNN, METH_NOARGS, nullptr},
|
|
{"_set_cudnn_benchmark", (PyCFunction)THPModule_setBenchmarkCuDNN, METH_O, nullptr},
|
|
{"_get_cudnn_deterministic", (PyCFunction)THPModule_deterministicCuDNN, METH_NOARGS, nullptr},
|
|
{"_set_cudnn_deterministic", (PyCFunction)THPModule_setDeterministicCuDNN, METH_O, nullptr},
|
|
{"_to_dlpack", (PyCFunction)THPModule_toDLPack, METH_O, nullptr},
|
|
{"_from_dlpack", (PyCFunction)THPModule_fromDLPack, METH_O, nullptr},
|
|
{"set_flush_denormal", (PyCFunction)THPModule_setFlushDenormal, METH_O, nullptr},
|
|
{"get_default_dtype", (PyCFunction)THPModule_getDefaultDtype, METH_NOARGS, nullptr},
|
|
{"_is_default_type_cuda", (PyCFunction)THPModule_isDefaultTypeCuda, METH_NOARGS, nullptr},
|
|
{nullptr, nullptr, 0, nullptr}
|
|
};
|
|
|
|
bool THCPDoubleStorage_init(PyObject *module);
|
|
bool THCPFloatStorage_init(PyObject *module);
|
|
bool THCPHalfStorage_init(PyObject *module);
|
|
bool THCPLongStorage_init(PyObject *module);
|
|
bool THCPIntStorage_init(PyObject *module);
|
|
bool THCPShortStorage_init(PyObject *module);
|
|
bool THCPCharStorage_init(PyObject *module);
|
|
bool THCPByteStorage_init(PyObject *module);
|
|
|
|
bool THCPStream_init(PyObject *module);
|
|
|
|
#ifdef USE_CUDA
|
|
PyMethodDef* THCPModule_methods();
|
|
namespace torch { namespace cuda {
|
|
|
|
void initModule(PyObject *module);
|
|
|
|
}} // namespace torch::cuda
|
|
#endif
|
|
|
|
namespace torch { namespace nn {
|
|
|
|
void init__THNN(PyObject*);
|
|
#ifdef USE_CUDA
|
|
void init__THCUNN(PyObject*);
|
|
#endif
|
|
|
|
}} // namespace torch::nn
|
|
|
|
bool THDPDoubleStorage_init(PyObject *module);
|
|
bool THDPFloatStorage_init(PyObject *module);
|
|
//bool THDPHalfStorage_init(PyObject *module);
|
|
bool THDPLongStorage_init(PyObject *module);
|
|
bool THDPIntStorage_init(PyObject *module);
|
|
bool THDPShortStorage_init(PyObject *module);
|
|
bool THDPCharStorage_init(PyObject *module);
|
|
bool THDPByteStorage_init(PyObject *module);
|
|
|
|
static std::vector<PyMethodDef> methods;
|
|
|
|
#ifdef USE_DISTRIBUTED
|
|
PyMethodDef* THDPModule_methods();
|
|
#endif
|
|
|
|
// TODO: Refactor this in some less manual way
|
|
#ifdef USE_CUDNN
|
|
static PyObject * THCUDNN_cudnn_version(PyObject *self, PyObject *args)
|
|
{
|
|
return PyLong_FromLong(CUDNN_VERSION);
|
|
}
|
|
|
|
static PyMethodDef _THCUDNN_methods[] = {
|
|
{"_cudnn_version", (PyCFunction)THCUDNN_cudnn_version, METH_VARARGS, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
PyMethodDef* THCUDNN_methods() {
|
|
return _THCUDNN_methods;
|
|
}
|
|
#endif
|
|
|
|
// ATen warning handler for Python
|
|
static void warning_handler(
|
|
const c10::SourceLocation& source_location,
|
|
const char* msg) {
|
|
AutoGIL gil;
|
|
if (PyErr_WarnEx(PyExc_RuntimeWarning, msg, 1) < 0) {
|
|
throw python_error();
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef _WIN32
|
|
__declspec(dllexport)
|
|
#endif
|
|
PyObject* initModule() {
|
|
HANDLE_TH_ERRORS
|
|
THInferNumThreads();
|
|
|
|
#define ASSERT_TRUE(cmd) if (!(cmd)) return nullptr
|
|
|
|
THPUtils_addPyMethodDefs(methods, TorchMethods);
|
|
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
|
|
THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
|
|
#ifdef USE_CUDA
|
|
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
|
|
#endif
|
|
#ifdef USE_CUDNN
|
|
THPUtils_addPyMethodDefs(methods, THCUDNN_methods());
|
|
#endif
|
|
#ifdef USE_DISTRIBUTED
|
|
THPUtils_addPyMethodDefs(methods, THDPModule_methods());
|
|
#ifdef USE_C10D
|
|
THPUtils_addPyMethodDefs(methods, torch::distributed::c10d::python_functions());
|
|
#endif
|
|
#endif
|
|
|
|
#if PY_MAJOR_VERSION == 2
|
|
ASSERT_TRUE(module = Py_InitModule("torch._C", methods.data()));
|
|
#else
|
|
static struct PyModuleDef torchmodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"torch._C",
|
|
nullptr,
|
|
-1,
|
|
methods.data()
|
|
};
|
|
ASSERT_TRUE(module = PyModule_Create(&torchmodule));
|
|
#endif
|
|
ASSERT_TRUE(THPWrapper_init(module));
|
|
ASSERT_TRUE(THPGenerator_init(module));
|
|
ASSERT_TRUE(THPException_init(module));
|
|
THPSize_init(module);
|
|
THPDtype_init(module);
|
|
THPDTypeInfo_init(module);
|
|
THPLayout_init(module);
|
|
THPDevice_init(module);
|
|
ASSERT_TRUE(THPVariable_initModule(module));
|
|
ASSERT_TRUE(THPFunction_initModule(module));
|
|
ASSERT_TRUE(THPEngine_initModule(module));
|
|
// NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
|
|
// the export side of JIT, so this ONNX init needs to appear before the JIT
|
|
// init.
|
|
torch::onnx::initONNXBindings(module);
|
|
torch::jit::initJITBindings(module);
|
|
torch::autograd::initNNFunctions(module);
|
|
torch::autograd::init_legacy_variable(module);
|
|
#ifdef USE_CUDA
|
|
torch::cuda::initModule(module);
|
|
#endif
|
|
ASSERT_TRUE(THPDoubleStorage_init(module));
|
|
ASSERT_TRUE(THPFloatStorage_init(module));
|
|
ASSERT_TRUE(THPHalfStorage_init(module));
|
|
ASSERT_TRUE(THPLongStorage_init(module));
|
|
ASSERT_TRUE(THPIntStorage_init(module));
|
|
ASSERT_TRUE(THPShortStorage_init(module));
|
|
ASSERT_TRUE(THPCharStorage_init(module));
|
|
ASSERT_TRUE(THPByteStorage_init(module));
|
|
|
|
#ifdef USE_CUDA
|
|
// This will only initialise base classes and attach them to library namespace
|
|
// They won't be ready for real usage until importing cuda module, that will
|
|
// complete the process (but it defines Python classes before calling back into
|
|
// C, so these lines have to execute first)..
|
|
ASSERT_TRUE(THCPDoubleStorage_init(module));
|
|
ASSERT_TRUE(THCPFloatStorage_init(module));
|
|
ASSERT_TRUE(THCPHalfStorage_init(module));
|
|
ASSERT_TRUE(THCPLongStorage_init(module));
|
|
ASSERT_TRUE(THCPIntStorage_init(module));
|
|
ASSERT_TRUE(THCPShortStorage_init(module));
|
|
ASSERT_TRUE(THCPCharStorage_init(module));
|
|
ASSERT_TRUE(THCPByteStorage_init(module));
|
|
|
|
ASSERT_TRUE(THCPStream_init(module));
|
|
#endif
|
|
|
|
auto set_module_attr = [&](const char* name, PyObject* v, bool incref = true) {
|
|
// PyModule_AddObject steals reference
|
|
if (incref) {
|
|
Py_INCREF(v);
|
|
}
|
|
return PyModule_AddObject(module, name, v) == 0;
|
|
};
|
|
|
|
#ifdef USE_CUDNN
|
|
PyObject *has_cudnn = Py_True;
|
|
#else
|
|
PyObject *has_cudnn = Py_False;
|
|
#endif
|
|
ASSERT_TRUE(set_module_attr("has_cudnn", has_cudnn));
|
|
|
|
// force ATen to initialize because it handles
|
|
// setting up TH Errors so that they throw C++ exceptions
|
|
at::init();
|
|
|
|
py::reinterpret_borrow<py::module>(module).def("_demangle", &c10::demangle);
|
|
|
|
// Set ATen warnings to issue Python warnings
|
|
::c10::Warning::set_warning_handler(&warning_handler);
|
|
|
|
ASSERT_TRUE(set_module_attr("has_mkl", at::hasMKL() ? Py_True : Py_False));
|
|
ASSERT_TRUE(set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False));
|
|
|
|
#ifdef _GLIBCXX_USE_CXX11_ABI
|
|
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", _GLIBCXX_USE_CXX11_ABI ? Py_True : Py_False));
|
|
#else
|
|
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", Py_False));
|
|
#endif
|
|
|
|
auto& defaultGenerator = at::globalContext().defaultGenerator(at::kCPU);
|
|
THPDefaultGenerator = (THPGenerator*)THPGenerator_NewWithGenerator(
|
|
defaultGenerator);
|
|
// This reference is meant to be given away, so no need to incref here.
|
|
ASSERT_TRUE(set_module_attr("default_generator", (PyObject*)THPDefaultGenerator, /* incref= */ false));
|
|
|
|
#ifdef USE_NUMPY
|
|
if (_import_array() < 0) return nullptr;
|
|
#endif
|
|
|
|
torch::nn::init__THNN(module);
|
|
#ifdef USE_CUDA
|
|
torch::nn::init__THCUNN(module);
|
|
#endif
|
|
|
|
return module;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Checks that the _C shared library isn't initialized multiple times. This
|
|
// can happen if the same csrc files are compiled into multiple shared
|
|
// libraries.
|
|
inline void pytorch_duplicate_guard() {
|
|
static int initialized = 0;
|
|
if (initialized) {
|
|
fprintf(stderr, "pytorch: _C shared library re-initialized\n");
|
|
abort();
|
|
}
|
|
initialized = 1;
|
|
;}
|
|
|
|
struct call_duplicate_guard {
|
|
call_duplicate_guard() { pytorch_duplicate_guard(); }
|
|
};
|
|
|
|
static call_duplicate_guard _call_duplicate_guard;
|