pytorch/torch/ao/quantization/_dbr/utils.py
Vasiliy Kuznetsov 6d86dc5390 dbr quant: store auto_quant_state on the top level model (#72934)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72934

Before this PR, DBR quantization had a limitation on handling user
code which iterates over all module children. For example, imagine
a forward function such as

```
def forward(self, x):
    for module in self:
        x = module(x)
    return x
```

Before this PR, this code would break with DBR quantization, because
we attach `AutoQuantizationState` objects to each child, and those
objects live in the child's module hierarchy and will appear in
these kinds of iterations, changing the meaning of the user program.

This PR reduces the scope of this problem to just the top level module.
Instead of attaching `AutoQuantizationState` objects to each child,
we register them in a map on the parent. Here is a before and after:

```
// toy model
model
 |--> child1

// toy model with AutoQuantizationState objects, before this PR
model
 |--> child1
 |  |--> _auto_quant_state
 |--> _auto_quant_state

// toy model with AutoQuantizationState objects, after this PR
model
 |--> child1
 |--> _fqn_to_auto_quant_state_map
    |--> ( ) --> _auto_quant_state // of `model`
    |--> (child1) --> _auto_quant_state // of `model.child1`
```

Note: `child1._auto_quant_state` works as before for convenience,
but the `child1` object now stores a soft link to its `_auto_quant_state`
instead of properly registering it in its module hierarchy. This is
somewhat hacky. If we need to improve this in the future, we could
remove this soft link and refactor the code to call the FQN map
instead.

Note: if the top level module iterates over its children, things will
still be broken. This is less likely, and we will recommend that the
user work around this by wrapping their model, or checking for the
`AutoQuantizationStateModuleDict` type in their iteration loop.

The impact of this change should be an improvement of coverage
of user models. In fact, we expect this to drive our coverage of
torchbenchmark models from 89% to 100%.

Test Plan:
```
// previously disabled test cases with user code iterating
// over module children are now enabled, with wrappers
python test/test_quantization.py -k test_module_calls_items
python test/test_quantization.py -k test_vovnet_sequential
```

Reviewed By: dzdang

Differential Revision: D34281074

Pulled By: vkuzo

fbshipit-source-id: 0e25fc1ec529c47f72478a1875fe43219feac6b1
(cherry picked from commit 4008f89967)
2022-02-22 17:31:32 +00:00

742 lines
27 KiB
Python

import dataclasses
import enum
from typing import Callable, Tuple, Any, List, Optional, Dict
import torch
import torch.nn.functional as F
toq = torch.ops.quantized
from .mappings import (
functions_supported_by_quantization,
module_types_supported_by_quantization,
module_types_supported_by_quantization_preserves_dtype,
functions_supported_by_quantization_preserves_dtype,
fp32_to_int8_fun_mapping,
add_and_mul_ops,
conv_ops,
)
from ..qconfig import QConfigAny
from torch.quantization import (
ObserverBase,
FakeQuantizeBase,
is_activation_post_process,
)
from ..qconfig_dict_utils import (
maybe_adjust_qconfig_for_module_type_or_name,
)
def _raise_obs_not_found_error(func):
raise RuntimeError(
f'Encountered arithmetic operation {torch.typename(func)} but we have '
f'encountered fewer arithmetic operations in previous calibration runs. '
f'This likely indicates that the program contains dynamic control flow. '
f' Quantization is not defined over dynamic control flow!')
def _raise_obs_op_mismatch(func, prev_op):
raise RuntimeError(
f'Encountered arithmetic operation {torch.typename(func)} but previously '
f'recorded operation was {torch.typename(prev_op)}!. This likely indicates '
f'that the program contains dynamic control flow. Quantization is not '
f'defined over dynamic control flow!')
@dataclasses.dataclass
class QTensorInfo:
id: int # tensor ID
orig_dtype: torch.dtype # dtype seen while tracing with example input
inf_dtype: torch.dtype # dtype at inference
@dataclasses.dataclass
class FusionInfo:
# linear matched pattern, example: [torch.add, torch.relu]
pattern: Tuple[Callable, ...]
# what the current element should be replaced with during execution
# example: toq.add_relu (for torch.add -> torch.relu)
replacement_type_this_element: Callable
# true if the current element is the first element of the pattern,
# for example true for torch.add in (torch.add -> torch.relu)
is_first_element: bool
# true if the current element is the last element of the pattern,
# for example true for torch.relu in (torch.add -> torch.relu)
is_last_element: bool
@dataclasses.dataclass
class SeenQOpInfo:
idx: int
# Python type of the seen op. For modules, this is type(mod). For
# functions, this is the target function.
type: Callable
# True if the type is a module, False otherwise (for functions/methods).
type_is_module: bool
# Note: FQN refers to the current module for modules and to the parent
# module for functions
fqn: str
# Information about the input tensors
# Non-tensor inputs are represented with None.
input_tensor_infos: List[Optional[QTensorInfo]]
# Information about the output tensors
# Non-tensor outputs are represented with None.
output_tensor_infos: List[QTensorInfo]
# Information about tensors which will need to be packed,
# idx is the argument index in args
# name is the name of this parameter in the parent module
packable_tensor_idx_to_name: Dict[int, Optional[str]]
# Information about non-tensors which will need to be packed,
# idx is the argument index in args
# arg is the argument value
packable_nontensor_idx_to_arg: Dict[int, Any]
# Information about tensors which will need to be packed from kwargs.
# kwarg_name is the kwarg name
# name is the name of this parameter in the parent module
packable_tensor_kwarg_name_to_name: Dict[str, Optional[str]]
# This is True if all packable args are simple attributes, or there
# are no packable args.
# This is False if some packable args are results of other functions.
op_packing_only_uses_module_attributes: bool
# QConfig for the op, can be None
qconfig: QConfigAny
# fusion_info for the op, is None if no fusion is found
fusion_info: Optional[FusionInfo]
def __repr__(self) -> str:
s = f"(type): {self.type}\n"
s += f" (fqn): {self.fqn}\n"
s += f" (input_tensor_infos): {self.input_tensor_infos}\n"
s += f" (output_tensor_infos): {self.output_tensor_infos}"
if len(self.packable_tensor_idx_to_name):
s += f"\n (packable_tensor_idx_to_name): {self.packable_tensor_idx_to_name}"
if len(self.packable_nontensor_idx_to_arg):
s += f"\n (packable_nontensor_idx_to_arg): {self.packable_nontensor_idx_to_arg}"
if len(self.packable_tensor_kwarg_name_to_name):
s += f"\n (packable_tensor_kwarg_name_to_name): {self.packable_tensor_kwarg_name_to_name}"
if self.fusion_info:
s += f"\n (fusion_info): {self.fusion_info}"
return s
@dataclasses.dataclass
class SeenNonQOpInfo:
# Python type of the seen op. For modules, this is type(mod). For
# functions, this is the target function.
type: Callable
# Information about the input tensors
# Non-tensor inputs are represented with None.
input_tensor_infos: List[Optional[QTensorInfo]]
# Information about the output tensors
# Non-tensor outputs are represented with None.
output_tensor_infos: List[QTensorInfo]
class OpQuantizeabilityType(enum.Enum):
QUANTIZEABLE = 0
NOT_QUANTIZEABLE = 1
def op_needs_quantization(op: Callable) -> bool:
if op in functions_supported_by_quantization:
return True
elif type(op) in module_types_supported_by_quantization:
return True
else:
return False
# TODO: fix lint
class ObserverWrapper(torch.nn.Identity):
def __init__(self, child):
super().__init__()
self.child = child
self.dtype = child.dtype
def wrap_observers_in_placeholders(module: torch.nn.Module) -> None:
"""
Wraps each child observer of `module` in a placeholder which prevents
the execution of the observer during the forward. This is useful to prevent
tracing the model with example inputs from contributing to calibration
statistics.
"""
for name, child in module.named_children():
if isinstance(child, (ObserverBase, FakeQuantizeBase)):
wrapper = ObserverWrapper(child)
setattr(module, name, wrapper)
else:
wrap_observers_in_placeholders(child)
def unwrap_observers_from_placeholders(module: torch.nn.Module) -> None:
"""
Restores observers back to their original state.
"""
# Note: we cannot use module.named_children() because we can
# have two different names refer to the same module, for example
# when we are reusing observers for torch.add scalar version.
for name, child in module._modules.items():
if child is None:
continue
if isinstance(child, ObserverWrapper):
unwrapped = child.child
setattr(module, name, unwrapped)
else:
unwrap_observers_from_placeholders(child)
def trace_with_inputs(
model: torch.nn.Module,
example_args: Tuple[Any],
) -> None:
with torch.no_grad():
old_training = model.training
model.eval()
wrap_observers_in_placeholders(model)
model(*example_args)
unwrap_observers_from_placeholders(model)
if old_training:
model.train()
# TODO(future PR): verify correctness of this for all
# quantizeable modules
def is_leaf(
m: torch.nn.Module,
prepare_custom_config_dict: Optional[Dict[str, Any]],
) -> bool:
if prepare_custom_config_dict is None:
prepare_custom_config_dict = {}
if 'non_traceable_module_class' in prepare_custom_config_dict:
for target_cls in prepare_custom_config_dict['non_traceable_module_class']:
if isinstance(m, target_cls):
return True
# TODO(future PR): extend to the rest of the container classes
container_classes = (
torch.nn.Sequential,
torch.nn.ModuleList,
)
return (
# allowlist everything in torch.nn except containers
(m.__module__.startswith('torch.nn') and (
not isinstance(m, container_classes)
)) or
# allowlist nni modules, as they inherit from nn.Sequential
m.__module__.startswith('torch.nn.intrinsic') or
# observers and fake quants are leaves
is_activation_post_process(m)
)
class FuncOutputObsType(enum.Enum):
NONE = 0
NEW_OBS = 1
REUSES_FIRST_INPUT_OBS = 2
def get_func_output_obs_type(
seen_q_op_info: SeenQOpInfo,
) -> FuncOutputObsType:
op_type = seen_q_op_info.type
is_module = isinstance(op_type, type(torch.nn.Module))
if is_module:
return FuncOutputObsType.NONE
if seen_q_op_info.qconfig is None:
return FuncOutputObsType.NONE
# check for ops which need packed weights but the weights are
# coming from another function
if not seen_q_op_info.op_packing_only_uses_module_attributes:
return FuncOutputObsType.NONE
if op_type in add_and_mul_ops:
if (
len(seen_q_op_info.input_tensor_infos) > 0 and
seen_q_op_info.input_tensor_infos[0] is not None and
seen_q_op_info.input_tensor_infos[0].inf_dtype in (torch.int32, torch.int64)
):
# this is handling ops on dtypes such as torch.int
return FuncOutputObsType.NONE
elif (
len(seen_q_op_info.input_tensor_infos) > 1 and
seen_q_op_info.input_tensor_infos[1] is None
):
return FuncOutputObsType.REUSES_FIRST_INPUT_OBS
elif op_type in (torch.relu, F.relu):
return FuncOutputObsType.NONE
elif op_type == torch.cat:
if (
len(seen_q_op_info.input_tensor_infos) > 0 and
seen_q_op_info.input_tensor_infos[0] is not None and
seen_q_op_info.input_tensor_infos[0].inf_dtype in (torch.int32, torch.int64)
):
return FuncOutputObsType.NONE
return FuncOutputObsType.NEW_OBS
def converted_func_needs_scale_zp(seen_q_op_info: SeenQOpInfo) -> bool:
op_type = seen_q_op_info.type
is_module = isinstance(op_type, type(torch.nn.Module))
if is_module:
return False
if seen_q_op_info.qconfig is None:
return False
if op_type in add_and_mul_ops:
# check if both arguments are tensors
inputs = seen_q_op_info.input_tensor_infos
both_args_tensors = len(inputs) == 2 and inputs[0] is not None and \
inputs[1] is not None
# disable quantization for torch.mul with int tensor arguments
first_dtype_is_not_int = len(inputs) > 0 and \
inputs[0] is not None and \
inputs[0].inf_dtype not in (torch.int32, torch.int64)
return both_args_tensors and first_dtype_is_not_int
elif op_type == torch.cat:
inputs = seen_q_op_info.input_tensor_infos
first_dtype_is_not_int = len(inputs) > 0 and \
inputs[0] is not None and \
inputs[0].inf_dtype not in (torch.int32, torch.int64)
return first_dtype_is_not_int
elif op_type in conv_ops or op_type == F.linear:
outputs = seen_q_op_info.output_tensor_infos
is_int8 = outputs[0].inf_dtype == torch.quint8
return is_int8
return False
class FuncOutputDTypeType(enum.Enum):
# for ops which are quantizeable and are configured by the qconfig,
# for example F.conv2d
DTYPE_DEPENDS_ON_QCONFIG = 0
# for ops which are quantizeable and take the dtype of the previous
# op, for example nn.Dropout
DTYPE_EQUALS_INPUT_DTYPE = 1
# for ops which may be quantizeable in some cases but are not
# quantizeable due to observed syntax (for example, F.conv2d with
# weights coming from another function).
DTYPE_DEFAULT_BC_UNSUPPORTED_SYNTAX = 2
def get_func_output_dtype_type(
seen_q_op_info: SeenQOpInfo,
) -> FuncOutputDTypeType:
if seen_q_op_info.type_is_module:
if seen_q_op_info.type in module_types_supported_by_quantization_preserves_dtype:
return FuncOutputDTypeType.DTYPE_EQUALS_INPUT_DTYPE
# check for ops which need packed weights but the weights are
# coming from another function
if not seen_q_op_info.op_packing_only_uses_module_attributes:
return FuncOutputDTypeType.DTYPE_DEFAULT_BC_UNSUPPORTED_SYNTAX
args = seen_q_op_info.input_tensor_infos
if seen_q_op_info.type in functions_supported_by_quantization_preserves_dtype:
return FuncOutputDTypeType.DTYPE_EQUALS_INPUT_DTYPE
elif seen_q_op_info.type in add_and_mul_ops and len(args) > 0 and \
args[0] is not None and \
args[0].orig_dtype in (torch.int32, torch.int64):
# binary ops with torch.int arguments do not support quantization
return FuncOutputDTypeType.DTYPE_EQUALS_INPUT_DTYPE
elif seen_q_op_info.type == torch.cat and len(args) > 0 and \
args[0] is not None and \
args[0].orig_dtype in (torch.int32, torch.int64):
# TODO(before land): do we still need this branch?
return FuncOutputDTypeType.DTYPE_EQUALS_INPUT_DTYPE
return FuncOutputDTypeType.DTYPE_DEPENDS_ON_QCONFIG
def get_weight_argument_info(op: Callable) -> Optional[Tuple[int, str]]:
if op == F.linear or op in conv_ops:
return (1, 'weight')
return None
def get_op_packing_only_uses_module_attributes(
op: Callable,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
module: torch.nn.Module,
) -> bool:
"""
Returns True if all arguments of this op which are weights are module
attributes on the root module, and False otherwise.
For example, for `F.linear(input, weight, bias)`, this would return
True if `weight` is stored directly on the parent module (the common case),
and False if `weight` was an output of a different op.
"""
# check for ops which need packed weights but the weights are
# coming from another function
info = get_weight_argument_info(op)
if info is not None:
idx, name = info
param_name = args[idx] if idx < len(args) else kwargs[name]
arg_name_in_root = get_param_name(module, param_name)
if arg_name_in_root is None:
return False
return True
def get_quantized_op(
seen_q_op_info: SeenQOpInfo,
idx_to_seen_q_op_infos: Dict[int, SeenQOpInfo],
) -> Optional[Callable]:
"""
Given a `seen_q_op_info`, returns the quantized version of the seen function.
If the `seen_q_op_info` corresponds to a module, returns `None`.
If the function does need quantizing, returns `None`.
"""
# if we are in a fusion, use the fusion replacement rules
if seen_q_op_info.fusion_info is not None:
return seen_q_op_info.fusion_info.replacement_type_this_element
op_type = seen_q_op_info.type
is_module = isinstance(op_type, type(torch.nn.Module))
if is_module:
return None
if seen_q_op_info.output_tensor_infos[0].inf_dtype != torch.quint8:
return None
if (
(op_type in add_and_mul_ops or op_type == torch.cat) and
seen_q_op_info.input_tensor_infos[0] is not None and
seen_q_op_info.input_tensor_infos[0].inf_dtype in (torch.int32, torch.int64)
):
# handle torch.mul with int tensor arguments
return None
elif op_type in fp32_to_int8_fun_mapping:
return fp32_to_int8_fun_mapping[op_type]
return None
def get_input_observed_arg_idxs(
op_type: Callable,
op_type_is_module: bool,
) -> Optional[List[int]]:
if op_type_is_module:
# TODO(future PR): handle RNNs
return [0]
elif op_type in conv_ops:
return [0, 1]
elif op_type == F.linear:
return [0, 1]
# None means "observe all Tensor args"
return None
def get_packable_tensor_arg_idxs(op: Callable) -> Optional[List[int]]:
"""
Returns tensor arg idxs which correspond to parameters which will need
to be packed.
"""
if op in conv_ops:
return [1, 2]
elif op == F.linear:
return [1, 2]
return None
def get_packable_tensor_kwarg_names(op: Callable) -> Optional[List[str]]:
"""
Returns tensor kwarg names which correspond to parameters which will
need to be packed.
"""
if op == F.linear or op in conv_ops:
return ['weight', 'bias']
return None
def get_param_name(module: torch.nn.Module, arg: Any) -> Optional[str]:
"""
Returns the name of arg with respect to the current module.
"""
for name, param in module.named_parameters():
if arg is param:
return name
return None
# raise AssertionError(f"arg {arg} not found in module {module}")
def get_packable_nontensor_arg_idxs(op: Callable) -> Optional[List[int]]:
"""
Returns nontensor arg idxs which correspond to arguments which will need
to be packed.
"""
if op in conv_ops:
# stride, padding, dilation, groups
return [3, 4, 5, 6]
return None
def get_packable_arg_idxs(op: Callable) -> Optional[List[int]]:
if op in conv_ops:
# weight, bias, stride, padding, dilation, groups
return [1, 2, 3, 4, 5, 6]
elif op == F.linear:
# weight, bias
return [1, 2]
return None
def get_weight_arg_idx(op: Callable) -> Optional[int]:
if op in conv_ops:
return 1
elif op == F.linear:
return 1
return None
def iterate_and_apply(
args: Any,
flattened_tensor_infos: List[Optional[QTensorInfo]],
func: Callable,
flattened_tensor_infos_idx=None
) -> Any:
"""
Inputs:
`args`: arguments to a function, may contain nested types, for example:
([torch.Tensor, torch.Tensor], int, (int, int))
`flattened_tensor_infos`: tensor information containers for each tensor
in `args`, flattened, for example corresponding with above:
({...}, {...}, None, None, None)
`func`: function to apply to each tensor in `args` to create `new_args`
Returns `new_args`, where each tensor has been transformed by `func`.
"""
arg_idx = 0
if flattened_tensor_infos_idx is None:
flattened_tensor_infos_idx = [0]
if isinstance(args, tuple):
new_args = []
for arg in args:
new_arg = iterate_and_apply(
arg, flattened_tensor_infos, func, flattened_tensor_infos_idx)
new_args.append(new_arg)
return tuple(new_args)
elif isinstance(args, list):
for idx in range(len(args)):
new_arg = iterate_and_apply(
args[idx], flattened_tensor_infos, func, flattened_tensor_infos_idx)
args[idx] = new_arg
return args
else:
# individual element
cur_flattened_tensor_info = \
flattened_tensor_infos[flattened_tensor_infos_idx[0]]
flattened_tensor_infos_idx[0] += 1
if cur_flattened_tensor_info is not None:
return func(args, cur_flattened_tensor_info)
else:
return args
def get_producer_of_seen_q_op_info(
idx_to_seen_q_op_info: Dict[int, SeenQOpInfo],
cur_seen_q_op_info: SeenQOpInfo,
) -> Optional[SeenQOpInfo]:
"""
Input: cur_seen_q_op_info, all seen ops
Output: the SeenQOpInfo which created the input to the current SeenQOpInfo
"""
if cur_seen_q_op_info.input_tensor_infos[0] is None:
return None
input_tensor_id = cur_seen_q_op_info.input_tensor_infos[0].id
for idx, seen_q_op_info in idx_to_seen_q_op_info.items():
for output_tensor_info in seen_q_op_info.output_tensor_infos:
if output_tensor_info is not None:
if input_tensor_id == output_tensor_info.id:
return seen_q_op_info
return None
def get_users_of_seen_q_op_info(
idx_to_seen_q_op_info: Dict[int, SeenQOpInfo],
cur_seen_q_op_info: SeenQOpInfo,
) -> List[SeenQOpInfo]:
"""
Input: cur_seen_q_op_info
Output: list of all seen_q_op_infos which use the output of the cur_seen_q_op_info,
"""
if len(cur_seen_q_op_info.output_tensor_infos) != 1:
return []
output_tensor_id = cur_seen_q_op_info.output_tensor_infos[0].id
results = []
for idx, seen_q_op_info in idx_to_seen_q_op_info.items():
for input_tensor_info in seen_q_op_info.input_tensor_infos:
if input_tensor_info is not None:
if output_tensor_id == input_tensor_info.id:
results.append(seen_q_op_info)
return results
class HookType(enum.Enum):
"""
Describes the various types of function and module hooks that are used
to implement quantization syntax transforms.
"""
# Hooks which are run before, during and after a quantizeable op.
# Usually used for op input and output observation, subsituating
# quantized kernels, and dynamically looking up arguments to quantized
# kernels.
OP_HOOKS = 0
# Hooks which are run before or after a `torch.nn.Module` which
# is a non-leaf. Usually used for dtype transforms if the user requests
# that the inputs or outputs of a certain module are of some dtype.
MODULE_IO_HOOKS = 1
# Hooks which are run before a non-quantizeable op which requires
# `torch.float` inputs. Any inputs which are not floats are converted
# back to floats.
ARG_DEQUANTS = 2
# Everything else
NONE = 3
def get_torch_function_hook_type(
parent_module: Optional[torch.nn.Module],
func: Callable,
) -> HookType:
# the direct __dict__ accesses are for performance, because
# the default `torch.nn.Module.__getattr__` has overhead.
parent_module_has_qstate = parent_module is not None and \
'_auto_quant_state' in parent_module.__dict__
needs_op_hooks = parent_module_has_qstate and \
parent_module.__dict__['_auto_quant_state'].cur_op_needs_hooks(func) # type: ignore[union-attr, operator]
if needs_op_hooks:
return HookType.OP_HOOKS
elif (
parent_module_has_qstate and
# do not attempt to dequantize the args to dequantize, as that will
# lead to infinite recursion
func != torch.Tensor.dequantize
):
return HookType.ARG_DEQUANTS
else:
return HookType.NONE
def get_module_hook_type(
parent_module: Optional[torch.nn.Module],
cur_module: torch.nn.Module,
) -> HookType:
cached_hook_type = getattr(cur_module, '_auto_quant_module_hook_type', None)
if cached_hook_type is not None:
return cached_hook_type
parent_module_has_qstate = parent_module is not None and \
'_auto_quant_state' in parent_module.__dict__
needs_op_hooks = parent_module_has_qstate and \
parent_module.__dict__['_auto_quant_state'].cur_op_needs_hooks(cur_module) # type: ignore[union-attr, operator]
# We need IO hooks if
# * we are calling forward on a module (always True here)
# * that module has quant state
# * that module does not need op hooks for the parent
needs_io_hooks = (
'_auto_quant_state' in cur_module.__dict__ and
(not needs_op_hooks)
)
needs_arg_dequants = parent_module_has_qstate and not needs_op_hooks
if needs_op_hooks:
result = HookType.OP_HOOKS
elif needs_io_hooks:
result = HookType.MODULE_IO_HOOKS
elif needs_arg_dequants:
result = HookType.ARG_DEQUANTS
else:
result = HookType.NONE
cur_module._auto_quant_module_hook_type = result # type: ignore[assignment]
return result
def clone_detach_tensor_without_dispatch(x: torch.Tensor) -> torch.Tensor:
"""
Creates a detached clone of `x`, unwrapping x from any dispatched
type before performing the copy.
This is necessary to not leak dispatched types to debugging logic
such as numeric suite.
TODO(future PR): figure out why is_quantized returns False for
the dispatched types, even though the underlying tensor is quantized.
"""
old_class = x.__class__
x.__class__ = torch.Tensor
x_copy = x.clone().detach()
x.__class__ = old_class
return x_copy
def get_input_args_quant_dequant_info(
seen_q_op_info: SeenQOpInfo,
tensor_id_to_scale_zp: Dict[int, Tuple[torch.Tensor, torch.Tensor]],
) -> Tuple[List[Optional[Tuple[float, int]]], List[bool], bool]:
"""
Returns a list of information about the tensor inputs to the current op.
Quant list:
For each tensor input:
* if the tensor input needs a quant, the list will contain
(scale, zero_point)
* if the tensor input does not need a quant, the list will contain None
Dequant list:
For each tensor input:
* if the tensor input needs a dequant, True, otherwise, False
any_arg_quant_or_dequant_needed:
If True, at least one of quants or dequants is needed. If False,
there are no quants or dequants needed.
For example, if there are two tensor inputs to the current op, and the
first input needs a quant, this function will return
# quants
[(scale0, zero_point0), None],
# dequants
[False, False]
"""
quant_infos: List[Optional[Tuple[float, int]]] = []
dequant_infos: List[bool] = []
# determine the expected output dtype
output_dtype = seen_q_op_info.output_tensor_infos[0].inf_dtype
packable_arg_idxs = get_packable_arg_idxs(seen_q_op_info.type)
any_arg_quant_or_dequant_needed = False
for input_arg_idx, input_arg in enumerate(seen_q_op_info.input_tensor_infos):
arg_will_be_packed = packable_arg_idxs is not None and \
input_arg_idx in packable_arg_idxs and \
seen_q_op_info.op_packing_only_uses_module_attributes
if input_arg is not None and not arg_will_be_packed:
tensor_id = input_arg.id
if input_arg.inf_dtype != output_dtype:
any_arg_quant_or_dequant_needed = True
if output_dtype == torch.quint8:
assert tensor_id in tensor_id_to_scale_zp
scale, zp = tensor_id_to_scale_zp[tensor_id]
# TODO: return this to the caller
quant_infos.append((scale, zp,)) # type: ignore[arg-type]
dequant_infos.append(False)
else:
quant_infos.append(None)
dequant_infos.append(True)
else:
quant_infos.append(None)
dequant_infos.append(False)
else:
quant_infos.append(None)
dequant_infos.append(False)
return quant_infos, dequant_infos, any_arg_quant_or_dequant_needed
def get_cur_qconfig(
qconfig_dict: Dict[str, Any],
cur_fqn: str,
cur_op_type: Callable,
) -> Optional[QConfigAny]:
# precedence: global -> object_type -> module_name_regex -> module_name
# -> module_name_object_type_order
# (module_name_regex, module_name_object_type_order not implemented yet)
# global
global_qconfig = qconfig_dict['']
qconfig = maybe_adjust_qconfig_for_module_type_or_name(
qconfig_dict, cur_op_type, cur_fqn, global_qconfig)
return qconfig
# We store quantization state for all children on the top level module in a
# ModuleDict. In order to properly special case this module from other
# ModuleDict instances, we create a marker class for it.
class AutoQuantizationStateModuleDict(torch.nn.ModuleDict):
pass
def get_fqn_valid_for_module_dict_key(fqn: str) -> str:
"""
Modifies `fqn` to make it a valid key to a ModuleDict.
"""
if fqn == '':
fqn = ' '
return fqn.replace('.', ':')