mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This is a new version of #15648 based on the latest master branch. Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR. In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.) Fixes https://github.com/pytorch/pytorch/issues/71105 @ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797 Approved by: https://github.com/ezyang
127 lines
4.6 KiB
Python
127 lines
4.6 KiB
Python
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.categorical import Categorical
|
|
from torch.distributions.distribution import Distribution
|
|
|
|
__all__ = ['OneHotCategorical', 'OneHotCategoricalStraightThrough']
|
|
|
|
class OneHotCategorical(Distribution):
|
|
r"""
|
|
Creates a one-hot categorical distribution parameterized by :attr:`probs` or
|
|
:attr:`logits`.
|
|
|
|
Samples are one-hot coded vectors of size ``probs.size(-1)``.
|
|
|
|
.. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
|
|
and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
|
|
will return this normalized value.
|
|
The `logits` argument will be interpreted as unnormalized log probabilities
|
|
and can therefore be any real number. It will likewise be normalized so that
|
|
the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
|
|
will return this normalized value.
|
|
|
|
See also: :func:`torch.distributions.Categorical` for specifications of
|
|
:attr:`probs` and :attr:`logits`.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
|
|
>>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
|
|
>>> m.sample() # equal probability of 0, 1, 2, 3
|
|
tensor([ 0., 0., 0., 1.])
|
|
|
|
Args:
|
|
probs (Tensor): event probabilities
|
|
logits (Tensor): event log probabilities (unnormalized)
|
|
"""
|
|
arg_constraints = {'probs': constraints.simplex,
|
|
'logits': constraints.real_vector}
|
|
support = constraints.one_hot
|
|
has_enumerate_support = True
|
|
|
|
def __init__(self, probs=None, logits=None, validate_args=None):
|
|
self._categorical = Categorical(probs, logits)
|
|
batch_shape = self._categorical.batch_shape
|
|
event_shape = self._categorical.param_shape[-1:]
|
|
super(OneHotCategorical, self).__init__(batch_shape, event_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(OneHotCategorical, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new._categorical = self._categorical.expand(batch_shape)
|
|
super(OneHotCategorical, new).__init__(batch_shape, self.event_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._categorical._new(*args, **kwargs)
|
|
|
|
@property
|
|
def _param(self):
|
|
return self._categorical._param
|
|
|
|
@property
|
|
def probs(self):
|
|
return self._categorical.probs
|
|
|
|
@property
|
|
def logits(self):
|
|
return self._categorical.logits
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._categorical.probs
|
|
|
|
@property
|
|
def mode(self):
|
|
probs = self._categorical.probs
|
|
mode = probs.argmax(axis=-1)
|
|
return torch.nn.functional.one_hot(mode, num_classes=probs.shape[-1]).to(probs)
|
|
|
|
@property
|
|
def variance(self):
|
|
return self._categorical.probs * (1 - self._categorical.probs)
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._categorical.param_shape
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
sample_shape = torch.Size(sample_shape)
|
|
probs = self._categorical.probs
|
|
num_events = self._categorical._num_events
|
|
indices = self._categorical.sample(sample_shape)
|
|
return torch.nn.functional.one_hot(indices, num_events).to(probs)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
indices = value.max(-1)[1]
|
|
return self._categorical.log_prob(indices)
|
|
|
|
def entropy(self):
|
|
return self._categorical.entropy()
|
|
|
|
def enumerate_support(self, expand=True):
|
|
n = self.event_shape[0]
|
|
values = torch.eye(n, dtype=self._param.dtype, device=self._param.device)
|
|
values = values.view((n,) + (1,) * len(self.batch_shape) + (n,))
|
|
if expand:
|
|
values = values.expand((n,) + self.batch_shape + (n,))
|
|
return values
|
|
|
|
class OneHotCategoricalStraightThrough(OneHotCategorical):
|
|
r"""
|
|
Creates a reparameterizable :class:`OneHotCategorical` distribution based on the straight-
|
|
through gradient estimator from [1].
|
|
|
|
[1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
|
|
(Bengio et al, 2013)
|
|
"""
|
|
has_rsample = True
|
|
|
|
def rsample(self, sample_shape=torch.Size()):
|
|
samples = self.sample(sample_shape)
|
|
probs = self._categorical.probs # cached via @lazy_property
|
|
return samples + (probs - probs.detach())
|