pytorch/torch/distributions/dirichlet.py
joncrall 4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00

106 lines
3.9 KiB
Python

import torch
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
__all__ = ['Dirichlet']
# This helper is exposed for testing.
def _Dirichlet_backward(x, concentration, grad_output):
total = concentration.sum(-1, True).expand_as(concentration)
grad = torch._dirichlet_grad(x, concentration, total)
return grad * (grad_output - (x * grad_output).sum(-1, True))
class _Dirichlet(Function):
@staticmethod
def forward(ctx, concentration):
x = torch._sample_dirichlet(concentration)
ctx.save_for_backward(x, concentration)
return x
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
x, concentration = ctx.saved_tensors
return _Dirichlet_backward(x, concentration, grad_output)
class Dirichlet(ExponentialFamily):
r"""
Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
>>> m = Dirichlet(torch.tensor([0.5, 0.5]))
>>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5]
tensor([ 0.1046, 0.8954])
Args:
concentration (Tensor): concentration parameter of the distribution
(often referred to as alpha)
"""
arg_constraints = {'concentration': constraints.independent(constraints.positive, 1)}
support = constraints.simplex
has_rsample = True
def __init__(self, concentration, validate_args=None):
if concentration.dim() < 1:
raise ValueError("`concentration` parameter must be at least one-dimensional.")
self.concentration = concentration
batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:]
super(Dirichlet, self).__init__(batch_shape, event_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Dirichlet, _instance)
batch_shape = torch.Size(batch_shape)
new.concentration = self.concentration.expand(batch_shape + self.event_shape)
super(Dirichlet, new).__init__(batch_shape, self.event_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def rsample(self, sample_shape=()):
shape = self._extended_shape(sample_shape)
concentration = self.concentration.expand(shape)
return _Dirichlet.apply(concentration)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return ((torch.log(value) * (self.concentration - 1.0)).sum(-1) +
torch.lgamma(self.concentration.sum(-1)) -
torch.lgamma(self.concentration).sum(-1))
@property
def mean(self):
return self.concentration / self.concentration.sum(-1, True)
@property
def mode(self):
concentrationm1 = (self.concentration - 1).clamp(min=0.)
mode = concentrationm1 / concentrationm1.sum(-1, True)
mask = (self.concentration < 1).all(axis=-1)
mode[mask] = torch.nn.functional.one_hot(mode[mask].argmax(axis=-1), concentrationm1.shape[-1]).to(mode)
return mode
@property
def variance(self):
con0 = self.concentration.sum(-1, True)
return self.concentration * (con0 - self.concentration) / (con0.pow(2) * (con0 + 1))
def entropy(self):
k = self.concentration.size(-1)
a0 = self.concentration.sum(-1)
return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
(k - a0) * torch.digamma(a0) -
((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))
@property
def _natural_params(self):
return (self.concentration, )
def _log_normalizer(self, x):
return x.lgamma().sum(-1) - torch.lgamma(x.sum(-1))