mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This is a new version of #15648 based on the latest master branch. Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR. In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.) Fixes https://github.com/pytorch/pytorch/issues/71105 @ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797 Approved by: https://github.com/ezyang
106 lines
3.9 KiB
Python
106 lines
3.9 KiB
Python
import torch
|
|
from torch.autograd import Function
|
|
from torch.autograd.function import once_differentiable
|
|
from torch.distributions import constraints
|
|
from torch.distributions.exp_family import ExponentialFamily
|
|
|
|
__all__ = ['Dirichlet']
|
|
|
|
# This helper is exposed for testing.
|
|
def _Dirichlet_backward(x, concentration, grad_output):
|
|
total = concentration.sum(-1, True).expand_as(concentration)
|
|
grad = torch._dirichlet_grad(x, concentration, total)
|
|
return grad * (grad_output - (x * grad_output).sum(-1, True))
|
|
|
|
|
|
class _Dirichlet(Function):
|
|
@staticmethod
|
|
def forward(ctx, concentration):
|
|
x = torch._sample_dirichlet(concentration)
|
|
ctx.save_for_backward(x, concentration)
|
|
return x
|
|
|
|
@staticmethod
|
|
@once_differentiable
|
|
def backward(ctx, grad_output):
|
|
x, concentration = ctx.saved_tensors
|
|
return _Dirichlet_backward(x, concentration, grad_output)
|
|
|
|
|
|
class Dirichlet(ExponentialFamily):
|
|
r"""
|
|
Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
|
|
>>> m = Dirichlet(torch.tensor([0.5, 0.5]))
|
|
>>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5]
|
|
tensor([ 0.1046, 0.8954])
|
|
|
|
Args:
|
|
concentration (Tensor): concentration parameter of the distribution
|
|
(often referred to as alpha)
|
|
"""
|
|
arg_constraints = {'concentration': constraints.independent(constraints.positive, 1)}
|
|
support = constraints.simplex
|
|
has_rsample = True
|
|
|
|
def __init__(self, concentration, validate_args=None):
|
|
if concentration.dim() < 1:
|
|
raise ValueError("`concentration` parameter must be at least one-dimensional.")
|
|
self.concentration = concentration
|
|
batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:]
|
|
super(Dirichlet, self).__init__(batch_shape, event_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Dirichlet, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.concentration = self.concentration.expand(batch_shape + self.event_shape)
|
|
super(Dirichlet, new).__init__(batch_shape, self.event_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def rsample(self, sample_shape=()):
|
|
shape = self._extended_shape(sample_shape)
|
|
concentration = self.concentration.expand(shape)
|
|
return _Dirichlet.apply(concentration)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return ((torch.log(value) * (self.concentration - 1.0)).sum(-1) +
|
|
torch.lgamma(self.concentration.sum(-1)) -
|
|
torch.lgamma(self.concentration).sum(-1))
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.concentration / self.concentration.sum(-1, True)
|
|
|
|
@property
|
|
def mode(self):
|
|
concentrationm1 = (self.concentration - 1).clamp(min=0.)
|
|
mode = concentrationm1 / concentrationm1.sum(-1, True)
|
|
mask = (self.concentration < 1).all(axis=-1)
|
|
mode[mask] = torch.nn.functional.one_hot(mode[mask].argmax(axis=-1), concentrationm1.shape[-1]).to(mode)
|
|
return mode
|
|
|
|
@property
|
|
def variance(self):
|
|
con0 = self.concentration.sum(-1, True)
|
|
return self.concentration * (con0 - self.concentration) / (con0.pow(2) * (con0 + 1))
|
|
|
|
def entropy(self):
|
|
k = self.concentration.size(-1)
|
|
a0 = self.concentration.sum(-1)
|
|
return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
|
|
(k - a0) * torch.digamma(a0) -
|
|
((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))
|
|
|
|
@property
|
|
def _natural_params(self):
|
|
return (self.concentration, )
|
|
|
|
def _log_normalizer(self, x):
|
|
return x.lgamma().sum(-1) - torch.lgamma(x.sum(-1))
|