mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This is a new version of #15648 based on the latest master branch. Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR. In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.) Fixes https://github.com/pytorch/pytorch/issues/71105 @ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797 Approved by: https://github.com/ezyang
199 lines
8.4 KiB
Python
199 lines
8.4 KiB
Python
from numbers import Number
|
|
import math
|
|
|
|
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.exp_family import ExponentialFamily
|
|
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
|
|
from torch.nn.functional import binary_cross_entropy_with_logits
|
|
|
|
__all__ = ['ContinuousBernoulli']
|
|
|
|
class ContinuousBernoulli(ExponentialFamily):
|
|
r"""
|
|
Creates a continuous Bernoulli distribution parameterized by :attr:`probs`
|
|
or :attr:`logits` (but not both).
|
|
|
|
The distribution is supported in [0, 1] and parameterized by 'probs' (in
|
|
(0,1)) or 'logits' (real-valued). Note that, unlike the Bernoulli, 'probs'
|
|
does not correspond to a probability and 'logits' does not correspond to
|
|
log-odds, but the same names are used due to the similarity with the
|
|
Bernoulli. See [1] for more details.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
|
|
>>> m = ContinuousBernoulli(torch.tensor([0.3]))
|
|
>>> m.sample()
|
|
tensor([ 0.2538])
|
|
|
|
Args:
|
|
probs (Number, Tensor): (0,1) valued parameters
|
|
logits (Number, Tensor): real valued parameters whose sigmoid matches 'probs'
|
|
|
|
[1] The continuous Bernoulli: fixing a pervasive error in variational
|
|
autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019.
|
|
https://arxiv.org/abs/1907.06845
|
|
"""
|
|
arg_constraints = {'probs': constraints.unit_interval,
|
|
'logits': constraints.real}
|
|
support = constraints.unit_interval
|
|
_mean_carrier_measure = 0
|
|
has_rsample = True
|
|
|
|
def __init__(self, probs=None, logits=None, lims=(0.499, 0.501), validate_args=None):
|
|
if (probs is None) == (logits is None):
|
|
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
|
|
if probs is not None:
|
|
is_scalar = isinstance(probs, Number)
|
|
self.probs, = broadcast_all(probs)
|
|
# validate 'probs' here if necessary as it is later clamped for numerical stability
|
|
# close to 0 and 1, later on; otherwise the clamped 'probs' would always pass
|
|
if validate_args is not None:
|
|
if not self.arg_constraints['probs'].check(getattr(self, 'probs')).all():
|
|
raise ValueError("The parameter {} has invalid values".format('probs'))
|
|
self.probs = clamp_probs(self.probs)
|
|
else:
|
|
is_scalar = isinstance(logits, Number)
|
|
self.logits, = broadcast_all(logits)
|
|
self._param = self.probs if probs is not None else self.logits
|
|
if is_scalar:
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self._param.size()
|
|
self._lims = lims
|
|
super(ContinuousBernoulli, self).__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(ContinuousBernoulli, _instance)
|
|
new._lims = self._lims
|
|
batch_shape = torch.Size(batch_shape)
|
|
if 'probs' in self.__dict__:
|
|
new.probs = self.probs.expand(batch_shape)
|
|
new._param = new.probs
|
|
if 'logits' in self.__dict__:
|
|
new.logits = self.logits.expand(batch_shape)
|
|
new._param = new.logits
|
|
super(ContinuousBernoulli, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._param.new(*args, **kwargs)
|
|
|
|
def _outside_unstable_region(self):
|
|
return torch.max(torch.le(self.probs, self._lims[0]),
|
|
torch.gt(self.probs, self._lims[1]))
|
|
|
|
def _cut_probs(self):
|
|
return torch.where(self._outside_unstable_region(),
|
|
self.probs,
|
|
self._lims[0] * torch.ones_like(self.probs))
|
|
|
|
def _cont_bern_log_norm(self):
|
|
'''computes the log normalizing constant as a function of the 'probs' parameter'''
|
|
cut_probs = self._cut_probs()
|
|
cut_probs_below_half = torch.where(torch.le(cut_probs, 0.5),
|
|
cut_probs,
|
|
torch.zeros_like(cut_probs))
|
|
cut_probs_above_half = torch.where(torch.ge(cut_probs, 0.5),
|
|
cut_probs,
|
|
torch.ones_like(cut_probs))
|
|
log_norm = torch.log(torch.abs(torch.log1p(-cut_probs) - torch.log(cut_probs))) - torch.where(
|
|
torch.le(cut_probs, 0.5),
|
|
torch.log1p(-2.0 * cut_probs_below_half),
|
|
torch.log(2.0 * cut_probs_above_half - 1.0))
|
|
x = torch.pow(self.probs - 0.5, 2)
|
|
taylor = math.log(2.0) + (4.0 / 3.0 + 104.0 / 45.0 * x) * x
|
|
return torch.where(self._outside_unstable_region(), log_norm, taylor)
|
|
|
|
@property
|
|
def mean(self):
|
|
cut_probs = self._cut_probs()
|
|
mus = cut_probs / (2.0 * cut_probs - 1.0) + 1.0 / (torch.log1p(-cut_probs) - torch.log(cut_probs))
|
|
x = self.probs - 0.5
|
|
taylor = 0.5 + (1.0 / 3.0 + 16.0 / 45.0 * torch.pow(x, 2)) * x
|
|
return torch.where(self._outside_unstable_region(), mus, taylor)
|
|
|
|
@property
|
|
def stddev(self):
|
|
return torch.sqrt(self.variance)
|
|
|
|
@property
|
|
def variance(self):
|
|
cut_probs = self._cut_probs()
|
|
vars = cut_probs * (cut_probs - 1.0) / torch.pow(1.0 - 2.0 * cut_probs, 2) + 1.0 / torch.pow(
|
|
torch.log1p(-cut_probs) - torch.log(cut_probs), 2)
|
|
x = torch.pow(self.probs - 0.5, 2)
|
|
taylor = 1.0 / 12.0 - (1.0 / 15.0 - 128. / 945.0 * x) * x
|
|
return torch.where(self._outside_unstable_region(), vars, taylor)
|
|
|
|
@lazy_property
|
|
def logits(self):
|
|
return probs_to_logits(self.probs, is_binary=True)
|
|
|
|
@lazy_property
|
|
def probs(self):
|
|
return clamp_probs(logits_to_probs(self.logits, is_binary=True))
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._param.size()
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
|
|
with torch.no_grad():
|
|
return self.icdf(u)
|
|
|
|
def rsample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
|
|
return self.icdf(u)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
logits, value = broadcast_all(self.logits, value)
|
|
return -binary_cross_entropy_with_logits(logits, value, reduction='none') + self._cont_bern_log_norm()
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
cut_probs = self._cut_probs()
|
|
cdfs = (torch.pow(cut_probs, value) * torch.pow(1.0 - cut_probs, 1.0 - value)
|
|
+ cut_probs - 1.0) / (2.0 * cut_probs - 1.0)
|
|
unbounded_cdfs = torch.where(self._outside_unstable_region(), cdfs, value)
|
|
return torch.where(
|
|
torch.le(value, 0.0),
|
|
torch.zeros_like(value),
|
|
torch.where(torch.ge(value, 1.0), torch.ones_like(value), unbounded_cdfs))
|
|
|
|
def icdf(self, value):
|
|
cut_probs = self._cut_probs()
|
|
return torch.where(
|
|
self._outside_unstable_region(),
|
|
(torch.log1p(-cut_probs + value * (2.0 * cut_probs - 1.0))
|
|
- torch.log1p(-cut_probs)) / (torch.log(cut_probs) - torch.log1p(-cut_probs)),
|
|
value)
|
|
|
|
def entropy(self):
|
|
log_probs0 = torch.log1p(-self.probs)
|
|
log_probs1 = torch.log(self.probs)
|
|
return self.mean * (log_probs0 - log_probs1) - self._cont_bern_log_norm() - log_probs0
|
|
|
|
@property
|
|
def _natural_params(self):
|
|
return (self.logits, )
|
|
|
|
def _log_normalizer(self, x):
|
|
"""computes the log normalizing constant as a function of the natural parameter"""
|
|
out_unst_reg = torch.max(torch.le(x, self._lims[0] - 0.5),
|
|
torch.gt(x, self._lims[1] - 0.5))
|
|
cut_nat_params = torch.where(out_unst_reg,
|
|
x,
|
|
(self._lims[0] - 0.5) * torch.ones_like(x))
|
|
log_norm = torch.log(torch.abs(torch.exp(cut_nat_params) - 1.0)) - torch.log(torch.abs(cut_nat_params))
|
|
taylor = 0.5 * x + torch.pow(x, 2) / 24.0 - torch.pow(x, 4) / 2880.0
|
|
return torch.where(out_unst_reg, log_norm, taylor)
|