pytorch/torch/distributions/continuous_bernoulli.py
joncrall 4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00

199 lines
8.4 KiB
Python

from numbers import Number
import math
import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
from torch.nn.functional import binary_cross_entropy_with_logits
__all__ = ['ContinuousBernoulli']
class ContinuousBernoulli(ExponentialFamily):
r"""
Creates a continuous Bernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both).
The distribution is supported in [0, 1] and parameterized by 'probs' (in
(0,1)) or 'logits' (real-valued). Note that, unlike the Bernoulli, 'probs'
does not correspond to a probability and 'logits' does not correspond to
log-odds, but the same names are used due to the similarity with the
Bernoulli. See [1] for more details.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
>>> m = ContinuousBernoulli(torch.tensor([0.3]))
>>> m.sample()
tensor([ 0.2538])
Args:
probs (Number, Tensor): (0,1) valued parameters
logits (Number, Tensor): real valued parameters whose sigmoid matches 'probs'
[1] The continuous Bernoulli: fixing a pervasive error in variational
autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019.
https://arxiv.org/abs/1907.06845
"""
arg_constraints = {'probs': constraints.unit_interval,
'logits': constraints.real}
support = constraints.unit_interval
_mean_carrier_measure = 0
has_rsample = True
def __init__(self, probs=None, logits=None, lims=(0.499, 0.501), validate_args=None):
if (probs is None) == (logits is None):
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
if probs is not None:
is_scalar = isinstance(probs, Number)
self.probs, = broadcast_all(probs)
# validate 'probs' here if necessary as it is later clamped for numerical stability
# close to 0 and 1, later on; otherwise the clamped 'probs' would always pass
if validate_args is not None:
if not self.arg_constraints['probs'].check(getattr(self, 'probs')).all():
raise ValueError("The parameter {} has invalid values".format('probs'))
self.probs = clamp_probs(self.probs)
else:
is_scalar = isinstance(logits, Number)
self.logits, = broadcast_all(logits)
self._param = self.probs if probs is not None else self.logits
if is_scalar:
batch_shape = torch.Size()
else:
batch_shape = self._param.size()
self._lims = lims
super(ContinuousBernoulli, self).__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(ContinuousBernoulli, _instance)
new._lims = self._lims
batch_shape = torch.Size(batch_shape)
if 'probs' in self.__dict__:
new.probs = self.probs.expand(batch_shape)
new._param = new.probs
if 'logits' in self.__dict__:
new.logits = self.logits.expand(batch_shape)
new._param = new.logits
super(ContinuousBernoulli, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._param.new(*args, **kwargs)
def _outside_unstable_region(self):
return torch.max(torch.le(self.probs, self._lims[0]),
torch.gt(self.probs, self._lims[1]))
def _cut_probs(self):
return torch.where(self._outside_unstable_region(),
self.probs,
self._lims[0] * torch.ones_like(self.probs))
def _cont_bern_log_norm(self):
'''computes the log normalizing constant as a function of the 'probs' parameter'''
cut_probs = self._cut_probs()
cut_probs_below_half = torch.where(torch.le(cut_probs, 0.5),
cut_probs,
torch.zeros_like(cut_probs))
cut_probs_above_half = torch.where(torch.ge(cut_probs, 0.5),
cut_probs,
torch.ones_like(cut_probs))
log_norm = torch.log(torch.abs(torch.log1p(-cut_probs) - torch.log(cut_probs))) - torch.where(
torch.le(cut_probs, 0.5),
torch.log1p(-2.0 * cut_probs_below_half),
torch.log(2.0 * cut_probs_above_half - 1.0))
x = torch.pow(self.probs - 0.5, 2)
taylor = math.log(2.0) + (4.0 / 3.0 + 104.0 / 45.0 * x) * x
return torch.where(self._outside_unstable_region(), log_norm, taylor)
@property
def mean(self):
cut_probs = self._cut_probs()
mus = cut_probs / (2.0 * cut_probs - 1.0) + 1.0 / (torch.log1p(-cut_probs) - torch.log(cut_probs))
x = self.probs - 0.5
taylor = 0.5 + (1.0 / 3.0 + 16.0 / 45.0 * torch.pow(x, 2)) * x
return torch.where(self._outside_unstable_region(), mus, taylor)
@property
def stddev(self):
return torch.sqrt(self.variance)
@property
def variance(self):
cut_probs = self._cut_probs()
vars = cut_probs * (cut_probs - 1.0) / torch.pow(1.0 - 2.0 * cut_probs, 2) + 1.0 / torch.pow(
torch.log1p(-cut_probs) - torch.log(cut_probs), 2)
x = torch.pow(self.probs - 0.5, 2)
taylor = 1.0 / 12.0 - (1.0 / 15.0 - 128. / 945.0 * x) * x
return torch.where(self._outside_unstable_region(), vars, taylor)
@lazy_property
def logits(self):
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self):
return clamp_probs(logits_to_probs(self.logits, is_binary=True))
@property
def param_shape(self):
return self._param.size()
def sample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
with torch.no_grad():
return self.icdf(u)
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
return self.icdf(u)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
logits, value = broadcast_all(self.logits, value)
return -binary_cross_entropy_with_logits(logits, value, reduction='none') + self._cont_bern_log_norm()
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
cut_probs = self._cut_probs()
cdfs = (torch.pow(cut_probs, value) * torch.pow(1.0 - cut_probs, 1.0 - value)
+ cut_probs - 1.0) / (2.0 * cut_probs - 1.0)
unbounded_cdfs = torch.where(self._outside_unstable_region(), cdfs, value)
return torch.where(
torch.le(value, 0.0),
torch.zeros_like(value),
torch.where(torch.ge(value, 1.0), torch.ones_like(value), unbounded_cdfs))
def icdf(self, value):
cut_probs = self._cut_probs()
return torch.where(
self._outside_unstable_region(),
(torch.log1p(-cut_probs + value * (2.0 * cut_probs - 1.0))
- torch.log1p(-cut_probs)) / (torch.log(cut_probs) - torch.log1p(-cut_probs)),
value)
def entropy(self):
log_probs0 = torch.log1p(-self.probs)
log_probs1 = torch.log(self.probs)
return self.mean * (log_probs0 - log_probs1) - self._cont_bern_log_norm() - log_probs0
@property
def _natural_params(self):
return (self.logits, )
def _log_normalizer(self, x):
"""computes the log normalizing constant as a function of the natural parameter"""
out_unst_reg = torch.max(torch.le(x, self._lims[0] - 0.5),
torch.gt(x, self._lims[1] - 0.5))
cut_nat_params = torch.where(out_unst_reg,
x,
(self._lims[0] - 0.5) * torch.ones_like(x))
log_norm = torch.log(torch.abs(torch.exp(cut_nat_params) - 1.0)) - torch.log(torch.abs(cut_nat_params))
taylor = 0.5 * x + torch.pow(x, 2) / 24.0 - torch.pow(x, 4) / 2880.0
return torch.where(out_unst_reg, log_norm, taylor)