mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
The `PositiveDefiniteTransform` is required to transform from an unconstrained space to positive definite matrices, e.g. to support testing the Wishart mode in #76690. It is a simple extension of the `LowerCholeskyTransform`. I've also added a small test that ensures the generated data belong to the domain of the associated transform. Previously, the data generated for the inverse transform of the `LowerCholeskyTransform` wasn't part of the domain, and the test only passed because the comparison uses `equal_nan=True`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/76777 Approved by: https://github.com/lezcano, https://github.com/fritzo, https://github.com/soumith |
||
|---|---|---|
| .. | ||
| __init__.py | ||
| bernoulli.py | ||
| beta.py | ||
| binomial.py | ||
| categorical.py | ||
| cauchy.py | ||
| chi2.py | ||
| constraint_registry.py | ||
| constraints.py | ||
| continuous_bernoulli.py | ||
| dirichlet.py | ||
| distribution.py | ||
| exp_family.py | ||
| exponential.py | ||
| fishersnedecor.py | ||
| gamma.py | ||
| geometric.py | ||
| gumbel.py | ||
| half_cauchy.py | ||
| half_normal.py | ||
| independent.py | ||
| kl.py | ||
| kumaraswamy.py | ||
| laplace.py | ||
| lkj_cholesky.py | ||
| log_normal.py | ||
| logistic_normal.py | ||
| lowrank_multivariate_normal.py | ||
| mixture_same_family.py | ||
| multinomial.py | ||
| multivariate_normal.py | ||
| negative_binomial.py | ||
| normal.py | ||
| one_hot_categorical.py | ||
| pareto.py | ||
| poisson.py | ||
| relaxed_bernoulli.py | ||
| relaxed_categorical.py | ||
| studentT.py | ||
| transformed_distribution.py | ||
| transforms.py | ||
| uniform.py | ||
| utils.py | ||
| von_mises.py | ||
| weibull.py | ||
| wishart.py | ||