pytorch/torch/distributed/fsdp/sharded_grad_scaler.py
Andrew Gu e3cf81e0a7 [FSDP] ufmt /fsdp (#87811)
This applies `ufmt` to all of the FSDP files in the `torch/distributed/fsdp/` directory.

**Test Plan**
CI

**Notes**
For VSCode users,
- Install `ufmt`: https://pypi.org/project/ufmt/
- Install VSCode `ufmt` extension: https://marketplace.visualstudio.com/items?itemName=omnilib.ufmt
- Include in `settings.json`:
```
{
    "[python]": {
        "editor.defaultFormatter": "omnilib.ufmt",
        "editor.formatOnSave": true,
    },
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87811
Approved by: https://github.com/rohan-varma, https://github.com/fegin
2022-10-27 04:25:55 +00:00

368 lines
17 KiB
Python

import logging
from collections import abc, defaultdict
from typing import Dict, List, Optional, Union
import torch
import torch.distributed as dist
from torch.cuda import FloatTensor # type: ignore[attr-defined]
from torch.cuda.amp.grad_scaler import _MultiDeviceReplicator, GradScaler, OptState
from torch.distributed.distributed_c10d import ProcessGroup
from torch.optim.sgd import SGD
def _refresh_per_optimizer_state():
return {"stage": OptState.READY, "found_inf_per_device": {}}
def _is_supported_device(tensor: torch.Tensor):
return tensor.is_cuda or tensor.device.type in ("xla", "cpu")
class _GeneralMultiDeviceReplicator(_MultiDeviceReplicator):
"""
Lazily serves tensor to request device. This class extends
_MultiDeviceReplicator to allow support for "cpu" as a device.
"""
def __init__(self, master_tensor: torch.Tensor) -> None:
assert _is_supported_device(master_tensor)
self.master = master_tensor
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
class ShardedGradScaler(GradScaler):
"""
ShardedGradScaler helps perform gradient scaling in a shard aware manner. It extends
functionality from GradScaler:
* Suports Pytorch DDP and FSDP implementations
* Support CPU offloaded tensors (as used in fully sharded data parallel[FSDP])
* Supports the custom Mixed Precision loss dtype (fp16, bf16) that FSDP returns
* Sync inf/nan for scaled gradient tensors on any torch.device (where tensors are placed) across
nodes
Example::
# Creates a ShardedGradScaler once at the beginning of training.
scaler = ShardedGradScaler()
for epoch in epochs:
for input, target in data:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
# Scales loss. Calls backward() on scaled loss to create scaled gradients.
scaler.scale(loss).backward()
# scaler.step() first unscales gradients of the optimizer's params.
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
# otherwise, optimizer.step() is skipped.
scaler.step(optimizer)
# Updates the scale for next iteration.
scaler.update()
See :class:`GradScaler` for explanation of scaling/unscaling and more use cases.
Args:
init_scale (float, optional, default=2.**16): Initial scale factor.
growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during
:meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations.
backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during
:meth:`update` if inf/NaN gradients occur in an iteration.
growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients
that must occur for the scale to be multiplied by ``growth_factor``.
enabled (bool, optional): If ``False``, disables gradient scaling. :meth:`step` simply
invokes the underlying ``optimizer.step()``, and other methods become no-ops.
Default: ``True``
process_group (ProcessGroup, optional, default=torch.distributed.group.WORLD):
process group for sharding
"""
def __init__(
self,
init_scale: float = 2.0**16,
backoff_factor: float = 0.5,
growth_factor: float = 2.0,
growth_interval: int = 2000,
enabled: bool = True,
process_group: Optional[ProcessGroup] = dist.group.WORLD,
):
super().__init__(
init_scale=init_scale,
backoff_factor=backoff_factor,
growth_factor=growth_factor,
growth_interval=growth_interval,
enabled=enabled,
)
if self._enabled:
self.process_group = process_group
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
def scale(
self, outputs: Union[torch.Tensor, List[torch.Tensor]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
if not self._enabled:
return outputs
if isinstance(outputs, torch.Tensor):
assert _is_supported_device(outputs)
if self._scale is None:
self._lazy_init_scale_growth_tracker(outputs.device)
assert self._scale is not None
scaled_output = outputs * self._scale.to(
device=outputs.device, non_blocking=True
)
# Here we ensure the return dtype is the same as the outputs dtype.
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
return scaled_output.type(outputs.dtype)
stash: List[_GeneralMultiDeviceReplicator] = []
def apply_scale(
val: Union[torch.Tensor, abc.Iterable]
) -> Union[torch.Tensor, abc.Iterable]:
if isinstance(val, torch.Tensor):
assert _is_supported_device(val)
if len(stash) == 0:
if self._scale is None:
self._lazy_init_scale_growth_tracker(val.device)
assert self._scale is not None
stash.append(_GeneralMultiDeviceReplicator(self._scale))
scaled_val = val * stash[0].get(val.device)
# Here we ensure the return dtype is the same as the outputs dtype.
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
return scaled_val.type(val.dtype)
elif isinstance(val, abc.Iterable):
iterator = map(apply_scale, val)
if isinstance(val, (list, tuple)):
return type(val)(iterator)
else:
return iterator
else:
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
return apply_scale(outputs) # type: ignore[return-value]
def _foreach_non_finite_check_and_unscale_cpu_(
self, grads: List, found_inf: torch.Tensor, inv_scale: torch.Tensor
) -> None:
if len(grads) == 0:
return
assert inv_scale.numel() == 1, "inv_scale must be a 1-element tensor."
assert found_inf.numel() == 1, "found_inf must be a 1-element tensor."
expected_device = grads[0].device
for grad in grads:
for tensor in grad:
if tensor.device != expected_device:
logging.error(
"tensor device is %s and expected device is %s"
% (tensor.device, expected_device)
)
raise ValueError("Gradients must be on the same device.")
# check for non_overlapping_and_dense doesn't exist in the python world
# as remarked here https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/AmpKernels.cu#L108
# we assume tensor is not MTA(multi tensor apply) safe. iterate through each item regardless of dtype
if (
torch.isinf(tensor).any().item() is True
or torch.isnan(tensor).any().item() is True
):
found_inf.data = torch.tensor([1.0])
break
else:
tensor.data *= inv_scale.item()
def _unscale_grads_(
self,
optimizer: SGD,
inv_scale: torch.Tensor,
found_inf: torch.Tensor,
allow_fp16: bool = True,
) -> Dict[torch.device, torch.Tensor]:
per_device_inv_scale = _GeneralMultiDeviceReplicator(inv_scale)
per_device_found_inf = _GeneralMultiDeviceReplicator(found_inf)
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
# There could be thousands of grads, so we'd like to iterate through them just once.
# However, we don't know their devices or dtypes in advance.
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
# Google says mypy struggles with defaultdicts type annotations.
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
with torch.no_grad():
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is None:
continue
if (not allow_fp16) and param.grad.dtype == torch.float16:
raise ValueError("Attempting to unscale FP16 gradients.")
if param.grad.is_sparse:
# is_coalesced() == False means the sparse grad has values with duplicate indices.
# coalesce() deduplicates indices and adds all values that have the same index.
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
# so we should check the coalesced _values().
if param.grad.dtype is torch.float16:
# coalesce is not suported in torch.float16
param_grad_fp32 = param.grad.type(torch.float32).coalesce()
param.grad = param_grad_fp32.type(torch.float16)
to_unscale = param.grad._values()
else:
to_unscale = param.grad
per_device_and_dtype_grads[to_unscale.device][
to_unscale.dtype
].append(to_unscale)
for device, per_dtype_grads in per_device_and_dtype_grads.items():
for grads in per_dtype_grads.values():
if grads[0].device.type == "cpu":
self._foreach_non_finite_check_and_unscale_cpu_(
grads,
per_device_found_inf.get(device),
per_device_inv_scale.get(device),
)
else:
torch._amp_foreach_non_finite_check_and_unscale_(
grads,
per_device_found_inf.get(device),
per_device_inv_scale.get(device),
)
return per_device_found_inf._per_device_tensors
def unscale_(self, optimizer: SGD) -> None:
if not self._enabled:
return
self._check_scale_growth_tracker("unscale_")
optimizer_state = self._per_optimizer_states[id(optimizer)]
if optimizer_state["stage"] is OptState.UNSCALED:
raise RuntimeError(
"unscale_() has already been called on this optimizer since the last update()."
)
elif optimizer_state["stage"] is OptState.STEPPED:
raise RuntimeError("unscale_() is being called after step().")
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
assert self._scale is not None
inv_scale = self._scale.double().reciprocal().float()
found_inf = torch.full(
(1,), 0.0, dtype=torch.float32, device=self._scale.device
)
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
optimizer, inv_scale, found_inf, True
)
optimizer_state["stage"] = OptState.UNSCALED
# Synchronize the detected inf across the ranks
optimizer_state = self._per_optimizer_states[id(optimizer)]
future_handles = []
for v in optimizer_state["found_inf_per_device"].values():
if v.device.type == "cpu":
v_on_cuda = v.cuda()
future_handles.append(
dist.all_reduce(
v_on_cuda, async_op=True, group=self.process_group
).get_future()
)
v.copy_(v_on_cuda.cpu())
else:
future_handles.append(
dist.all_reduce(
v, async_op=True, group=self.process_group
).get_future()
)
# Make sure that the calls are done before moving out.
if future_handles:
torch.futures.wait_all(future_handles)
def step(self, optimizer: SGD, *args, **kwargs) -> Optional[float]:
return super().step(optimizer, *args, **kwargs)
def _amp_update_scale_cpu_(self, found_inf) -> None:
"""
If found_inf is 1.0 (True), then scale is multiplied by backoff_factor and growth_tracker is set to zero.
Otherwise, scale is multiplied by the growth factor when the growth interval is reached.
"""
if found_inf.item() >= 1.0:
self._scale *= self._backoff_factor # type: ignore[arg-type]
self._growth_tracker = 0
else:
successful = self._growth_tracker + 1 # type: ignore[operator]
if successful == self._growth_interval: # type: ignore[arg-type]
self._scale *= self._growth_factor # type: ignore[arg-type]
self._growth_tracker = 0
else:
self._growth_tracker = successful
def update(self, new_scale: Optional[Union[float, FloatTensor]] = None) -> None:
"""
Updates the scale factor.
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
the scale is multiplied by ``growth_factor`` to increase it.
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
used directly, it's used to fill GradScaler's internal scale tensor. So if
``new_scale`` was a tensor, later in-place changes to that tensor will not further
affect the scale GradScaler uses internally.)
Args:
new_scale (float or :class:`torch.cuda.FloatTensor`, optional, default=None): New scale factor.
.. warning::
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
been invoked for all optimizers used this iteration.
"""
if not self._enabled:
return
_scale, _growth_tracker = self._check_scale_growth_tracker("update") # type: ignore[var-annotated]
if new_scale is not None:
# Accept a new user-defined scale.
if isinstance(new_scale, float):
self._scale.fill_(new_scale) # type: ignore[union-attr]
else:
reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor with requires_grad=False."
assert isinstance(new_scale, torch.cuda.FloatTensor), reason # type: ignore[attr-defined]
assert new_scale.numel() == 1, reason
assert new_scale.requires_grad is False, reason
self._scale.copy_(new_scale) # type: ignore[union-attr]
else:
# Consume shared inf/nan data collected from optimizers to update the scale.
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
found_infs = [
found_inf.to(device=_scale.device, non_blocking=True)
for state in self._per_optimizer_states.values()
for found_inf in state["found_inf_per_device"].values()
]
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
found_inf_combined = found_infs[0]
if len(found_infs) > 1:
for i in range(1, len(found_infs)):
found_inf_combined += found_infs[i]
if _scale.device.type == "cpu":
self._amp_update_scale_cpu_(found_inf_combined)
else:
torch._amp_update_scale_(
self._scale, # type: ignore[arg-type]
self._growth_tracker, # type: ignore[arg-type]
found_inf_combined,
self._growth_factor, # type: ignore[arg-type]
self._backoff_factor, # type: ignore[arg-type]
self._growth_interval, # type: ignore[arg-type]
)
# To prepare for next iteration, clear the data collected from optimizers this iteration.
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)