pytorch/torch/csrc/utils/pybind.h
Edward Z. Yang f7365eca90 Add unbacked symints support; item works now (#90624)
The big idea is to add `create_unbacked_symfloat` and `create_unbacked_symint` to ShapeEnv, allowing you to allocate symbolic floats/ints corresponding to data you don't know about at compile time. Then, instead of immediately erroring out when you try to call local_scalar_dense on a FakeTensor, we instead create a fresh symint/symfloat and return that.

There a bunch of odds and ends that need to be handled:

* A number of `numel` calls converted to `sym_numel`
* When we finally return from item(), we need to ensure we actually produce a SymInt/SymFloat when appropriate. The previous binding code assumed that you would have to get a normal Python item. I add a pybind11 binding for Scalar (to PyObject only) and refactor the code to use that. There is some trickiness where you are NOT allowed to go through c10::SymInt if there isn't actually any SymInt involved. See comment.
* One of our unit tests tripped an implicit data dependent access which occurs when you pass a Tensor as an argument to a sizes parameter. This is also converted to support symbolic shapes
* We now support tracking bare SymInt/SymFloat returns in proxy tensor mode (this was already in symbolic-shapes branch)
* Whenever we allocate an unbacked symint, we record the stack trace it was allocated at. These get printed when you attempt data dependent access on the symint (e.g., you try to guard on it)
* Subtlety: unbacked symints are not necessarily > 1. I added a test for this.

These unbacked symints are not very useful right now as you will almost always immediately raise an error later when you try to guard on them. The next logical step is adding an assertion refinement system that lets ShapeEnv learn facts about unbacked symints so it can do a better job eliding guards that are unnecessary.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90624
Approved by: https://github.com/Skylion007, https://github.com/voznesenskym
2022-12-12 13:33:07 +00:00

343 lines
10 KiB
C++

#pragma once
#include <torch/csrc/python_headers.h>
#include <ATen/core/Tensor.h>
#include <ATen/core/jit_type_base.h>
#include <c10/util/irange.h>
#include <c10/util/variant.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/utils/tensor_memoryformats.h>
#include <stdexcept>
#include <utility>
namespace py = pybind11;
// This makes intrusive_ptr to be available as a custom pybind11 holder type,
// see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true);
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr<T>, true);
namespace pybind11 {
namespace detail {
// torch.Tensor <-> at::Tensor conversions (without unwrapping)
template <>
struct TORCH_PYTHON_API type_caster<at::Tensor> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Tensor, _("torch.Tensor"));
bool load(handle src, bool);
static handle cast(
const at::Tensor& src,
return_value_policy /* policy */,
handle /* parent */);
};
// torch._StorageBase <-> at::Storage
template <>
struct type_caster<at::Storage> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Storage, _("torch.StorageBase"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (torch::isStorage(obj)) {
value = torch::createStorage(obj);
return true;
}
return false;
}
static handle cast(
const at::Storage& src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(torch::createPyObject(src));
}
};
template <>
struct type_caster<at::Generator> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Generator, _("torch.Generator"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPGenerator_Check(obj)) {
value = reinterpret_cast<THPGenerator*>(obj)->cdata;
return true;
}
return false;
}
static handle cast(
const at::Generator& src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(THPGenerator_Wrap(src));
}
};
template <>
struct TORCH_PYTHON_API type_caster<at::IntArrayRef> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::IntArrayRef, _("Tuple[int, ...]"));
bool load(handle src, bool);
static handle cast(
at::IntArrayRef src,
return_value_policy /* policy */,
handle /* parent */);
private:
std::vector<int64_t> v_value;
};
template <>
struct TORCH_PYTHON_API type_caster<at::SymIntArrayRef> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::SymIntArrayRef, _("List[int]"));
bool load(handle src, bool);
static handle cast(
at::SymIntArrayRef src,
return_value_policy /* policy */,
handle /* parent */);
private:
std::vector<c10::SymInt> v_value;
};
template <>
struct type_caster<at::MemoryFormat> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::MemoryFormat, _("torch.memory_format"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPMemoryFormat_Check(obj)) {
value = reinterpret_cast<THPMemoryFormat*>(obj)->memory_format;
return true;
}
return false;
}
static handle cast(
at::MemoryFormat src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(torch::utils::getTHPMemoryFormat(src));
}
};
template <>
struct type_caster<at::Device> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Device, _("torch.device"));
// PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device
// cannot be default-initialized, we provide this constructor to explicitly
// initialize that field. The value doesn't matter as it will be overwritten
// after a successful call to load.
type_caster() : value(c10::kCPU) {}
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPDevice_Check(obj)) {
value = reinterpret_cast<THPDevice*>(obj)->device;
return true;
}
return false;
}
static handle cast(
const at::Device& src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(THPDevice_New(src));
}
};
template <>
struct type_caster<c10::DispatchKey>
: public type_caster_base<c10::DispatchKey> {
using base = type_caster_base<c10::DispatchKey>;
c10::DispatchKey tmp;
public:
bool load(handle src, bool convert) {
if (base::load(src, convert)) {
return true;
} else if (py::isinstance(
src, py::module_::import("builtins").attr("str"))) {
tmp = c10::parseDispatchKey(py::cast<std::string>(src));
value = &tmp;
return true;
}
return false;
}
static handle cast(
c10::DispatchKey src,
return_value_policy policy,
handle parent) {
return base::cast(src, policy, parent);
}
};
template <>
struct TORCH_PYTHON_API type_caster<c10::Scalar> {
public:
PYBIND11_TYPE_CASTER(
c10::Scalar,
_("Union[Number, torch.SymInt, torch.SymFloat]"));
bool load(py::handle src, bool);
static py::handle cast(
const c10::Scalar& si,
return_value_policy /* policy */,
handle /* parent */);
};
template <>
struct TORCH_PYTHON_API type_caster<c10::SymInt> {
public:
PYBIND11_TYPE_CASTER(c10::SymInt, _("Union[int, torch.SymInt]"));
bool load(py::handle src, bool);
static py::handle cast(
c10::SymInt si,
return_value_policy /* policy */,
handle /* parent */);
};
template <>
struct TORCH_PYTHON_API type_caster<c10::SymFloat> {
public:
PYBIND11_TYPE_CASTER(c10::SymFloat, _("float"));
bool load(py::handle src, bool);
static py::handle cast(
c10::SymFloat si,
return_value_policy /* policy */,
handle /* parent */);
};
template <typename T>
struct type_caster<c10::complex<T>> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(c10::complex<T>, _("complex"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
// Refered from `THPUtils_unpackComplexDouble`
Py_complex py_complex = PyComplex_AsCComplex(obj);
if (py_complex.real == -1.0 && PyErr_Occurred()) {
return false;
}
// Python's Complex is always double precision.
value = c10::complex<double>(py_complex.real, py_complex.imag);
return true;
}
static handle cast(
const c10::complex<T>& complex,
return_value_policy /* policy */,
handle /* parent */) {
// Python only knows double precision complex.
return handle(PyComplex_FromDoubles(complex.real(), complex.imag()));
}
};
// Pybind11 bindings for our optional and variant types.
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
template <typename T>
struct type_caster<c10::optional<T>> : optional_caster<c10::optional<T>> {};
template <typename... Ts>
struct C10_MPARK_VISIBILITY_HIDDEN type_caster<c10::variant<Ts...>>
: variant_caster<c10::variant<Ts...>> {};
} // namespace detail
} // namespace pybind11
namespace torch {
namespace impl {
// Use this function if you have a C++ object that is used from both C++
// and Python contexts, and you need its GIL to be released when you
// destruct it in the Python context.
//
// This function is a valid shared_ptr destructor and can be used to
// conveniently allocate a shared_ptr to an object whose destructor will be run
// without the GIL. Pass it as the second argument to shared_ptr, e.g.,
//
// shared_ptr<T>(new T(), destroy_without_gil<T>)
//
// Attaching the GIL release logic to the holder pointer rather than the
// actual destructor of T is helpful when T is Python-agnostic and
// shouldn't refer to the PYthon API.
//
// Note there are limitations to the correctness of code that makes use of this.
// In particular, if a shared_ptr is constructed from C++ code without this
// destructor and then passed to pybind11, pybind11 will happily take ownership
// of the shared_ptr (and be willing to destruct it from a context where it is
// holding the GIL). unique_ptr with a type branded deleter is less prone to
// this problem, because a stock deleter unique_ptr is not convertible with it.
// I plan to mitigate this problem by adding DEBUG-only asserts to the true C++
// destructors that the GIL is not held (using a virtual call to get to the
// Python interpreter); alternately, we could use a virtual call to simply
// ensure we release the GIL in the C++ destructor, however, this is a layering
// violation (why does code that is ostensibly Python agnostic calling into the
// GIL).
//
// Adapted from
// https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510
template <typename T>
inline void destroy_without_gil(T* ptr) {
// Because the ownership of a shared_ptr is diffuse, it's not possible to
// necessarily predict whether or not the last reference to an object will
// be destructed from Python or C++. This means that in the destructor here,
// we don't necessarily know if we actually have the GIL or not; in fact,
// we don't even know if the Python interpreter still exists! Thus, we have
// to test for it before releasing the GIL.
//
// PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or
// _PyIsFinalizing? Both get set at the same time during the Python
// destruction process:
// https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717
// so the operant question is whether or not you want to release the GIL after
// finalization has completed (and there is just no Python interpreter).
// Clearly there is no need to release GIL in that state, so we want
// Py_IsInitialized.
if (Py_IsInitialized() && PyGILState_Check()) {
pybind11::gil_scoped_release nogil;
delete ptr;
} else {
delete ptr;
}
}
} // namespace impl
} // namespace torch