pytorch/torch/csrc/jit/backends
maxren 496c8ae760 [xnnpack][lite-int] Handle Constant Data (#89445)
Handling constant data for xnnpack delegation. This allows us to handle new modules like such:

```
class Module(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self._constant = torch.ones(4, 4, 4)

            def forward(self, x):
                return x + self._constant
```

this is the precursor work to handling convolution, as we need to serialize constant data(weights)

Differential Revision: [D41050349](https://our.internmc.facebook.com/intern/diff/D41050349/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89445
Approved by: https://github.com/digantdesai
2022-11-22 02:20:54 +00:00
..
coreml [coreml] delegate multiple outputs (#88345) 2022-11-03 20:05:53 +00:00
nnapi
xnnpack [xnnpack][lite-int] Handle Constant Data (#89445) 2022-11-22 02:20:54 +00:00
backend_debug_handler.cpp
backend_debug_handler.h
backend_debug_info.cpp
backend_debug_info.h
backend_detail.cpp
backend_detail.h
backend_exception.h
backend_init.cpp
backend_init.h
backend_interface.cpp
backend_interface.h
backend_preprocess.h
backend_resolver.cpp
backend_resolver.h
backend.h