mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Previously we explicitly set a qconfig for ops like conv and linear in the default QConfigMapping. However, this makes it difficult for user to override the global and have the new global take effect for basic ops. This commit removes these explicit settings so the user can simply run the following to quantize these ops. ``` qconfig_mapping = get_default_qconfig_mapping() qconfig_mapping.set_global(my_qconfig) ``` There is no change in behavior for the default use case of not setting anything on the default QConfigMapping. Test Plan: python test/test_quantization.py TestQuantizeFx.test_default_qconfig_mapping_override_global Reviewers: vkuzo, jerryzh168 Subscribers: vkuzo, jerryzh168 Pull Request resolved: https://github.com/pytorch/pytorch/pull/90066 Approved by: https://github.com/vkuzo, https://github.com/jerryzh168
323 lines
13 KiB
Python
323 lines
13 KiB
Python
from __future__ import annotations
|
|
from collections import OrderedDict
|
|
from typing import Any, Callable, Dict, Tuple, Union, List
|
|
|
|
import torch
|
|
|
|
from .fake_quantize import (
|
|
default_weight_fake_quant,
|
|
FixedQParamsFakeQuantize,
|
|
)
|
|
from .observer import (
|
|
_PartialWrapper,
|
|
default_fixed_qparams_range_0to1_observer,
|
|
default_fixed_qparams_range_neg1to1_observer,
|
|
default_placeholder_observer,
|
|
default_weight_observer,
|
|
)
|
|
from .qconfig import (
|
|
default_reuse_input_qconfig,
|
|
default_symmetric_qnnpack_qconfig,
|
|
get_default_qconfig,
|
|
get_default_qat_qconfig,
|
|
QConfig,
|
|
QConfigAny
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"get_default_qconfig_mapping",
|
|
"get_default_qat_qconfig_mapping",
|
|
"QConfigMapping",
|
|
]
|
|
|
|
|
|
# TODO: replace all usages with these constants
|
|
_GLOBAL_DICT_KEY = ""
|
|
_OBJECT_TYPE_DICT_KEY = "object_type"
|
|
_MODULE_NAME_REGEX_DICT_KEY = "module_name_regex"
|
|
_MODULE_NAME_DICT_KEY = "module_name"
|
|
_MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY = "module_name_object_type_order"
|
|
|
|
# TODO: derive this map from the BackendConfig
|
|
_FIXED_QPARAMS_OP_TO_OBSERVER: Dict[Union[Callable, str], _PartialWrapper] = {
|
|
torch.nn.Hardsigmoid: default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.functional.hardsigmoid: default_fixed_qparams_range_0to1_observer,
|
|
"hardsigmoid": default_fixed_qparams_range_0to1_observer,
|
|
"hardsigmoid_": default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.Sigmoid: default_fixed_qparams_range_0to1_observer,
|
|
torch.sigmoid: default_fixed_qparams_range_0to1_observer,
|
|
"sigmoid": default_fixed_qparams_range_0to1_observer,
|
|
"sigmoid_": default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.Softmax: default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.Tanh: default_fixed_qparams_range_neg1to1_observer,
|
|
torch.tanh: default_fixed_qparams_range_neg1to1_observer,
|
|
"tanh": default_fixed_qparams_range_neg1to1_observer,
|
|
"tanh_": default_fixed_qparams_range_neg1to1_observer,
|
|
}
|
|
|
|
|
|
def _get_default_qconfig_mapping(is_qat: bool, backend: str, version: int) -> QConfigMapping:
|
|
"""
|
|
Return the default QConfigMapping for the given quantization type and backend.
|
|
"""
|
|
if is_qat:
|
|
qconfig = get_default_qat_qconfig(backend, version)
|
|
else:
|
|
qconfig = get_default_qconfig(backend, version)
|
|
default_weight = default_weight_fake_quant if is_qat else default_weight_observer
|
|
|
|
# default_per_channel_weight_observer is not currently compatible with fbgemm backend
|
|
# so we have to modify the weight observer to default_weight_observer or another
|
|
# per tensor supported observer.
|
|
# see https://github.com/pytorch/pytorch/issues/47535
|
|
if backend in ("fbgemm", "x86"):
|
|
qconfig_transpose = QConfig(activation=qconfig.activation, weight=default_weight)
|
|
else:
|
|
qconfig_transpose = qconfig
|
|
|
|
# currently layernorm only supports float weights
|
|
# we have to add this because otherwise there will be a extra quantize-dequantize pair
|
|
qconfig_layernorm = QConfig(activation=qconfig.activation, weight=default_placeholder_observer)
|
|
|
|
qconfig_mapping = QConfigMapping() \
|
|
.set_global(qconfig) \
|
|
.set_object_type("reshape", default_reuse_input_qconfig) \
|
|
.set_object_type(torch.nn.ConvTranspose1d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.ConvTranspose2d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.ConvTranspose3d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.conv_transpose1d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.conv_transpose2d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.conv_transpose3d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.layer_norm, qconfig_layernorm) \
|
|
.set_object_type(torch.nn.LayerNorm, qconfig_layernorm) \
|
|
|
|
# Use special observers for ops with fixed qparams
|
|
fixed_qparams_observer_to_qconfig: Dict[Any, QConfigAny] = {}
|
|
for fixed_qparams_op, observer in _FIXED_QPARAMS_OP_TO_OBSERVER.items():
|
|
if observer in fixed_qparams_observer_to_qconfig:
|
|
fixed_qparams_qconfig = fixed_qparams_observer_to_qconfig[observer]
|
|
else:
|
|
if is_qat:
|
|
activation = FixedQParamsFakeQuantize.with_args(observer=observer)
|
|
else:
|
|
activation = observer
|
|
fixed_qparams_qconfig = QConfig(activation=activation, weight=default_weight)
|
|
fixed_qparams_observer_to_qconfig[observer] = fixed_qparams_qconfig
|
|
qconfig_mapping.set_object_type(fixed_qparams_op, fixed_qparams_qconfig)
|
|
|
|
return qconfig_mapping
|
|
|
|
def get_default_qconfig_mapping(backend="x86", version=0) -> QConfigMapping:
|
|
"""
|
|
Return the default QConfigMapping for post training quantization.
|
|
|
|
Args:
|
|
* ``backend`` (str) : the quantization backend for the default qconfig mapping, should be
|
|
one of ["x86" (default), "fbgemm", "qnnpack", "onednn"]
|
|
* ``version`` (int) : the version for the default qconfig mapping
|
|
"""
|
|
# TODO: add assert for backend choices
|
|
return _get_default_qconfig_mapping(False, backend, version)
|
|
|
|
def get_default_qat_qconfig_mapping(backend="x86", version=1) -> QConfigMapping:
|
|
"""
|
|
Return the default QConfigMapping for quantization aware training.
|
|
|
|
Args:
|
|
* ``backend`` (str) : the quantization backend for the default qconfig mapping, should be
|
|
one of ["x86" (default), "fbgemm", "qnnpack", "onednn"]
|
|
* ``version`` (int) : the version for the default qconfig mapping
|
|
"""
|
|
return _get_default_qconfig_mapping(True, backend, version)
|
|
|
|
def _get_symmetric_qnnpack_qconfig_mapping():
|
|
"""
|
|
Return a QConfigMapping that uses `torch.ao.quantization.default_symmetric_qnnpack_qconfig`
|
|
as the default QConfig.
|
|
"""
|
|
qconfig_mapping = get_default_qconfig_mapping("qnnpack") \
|
|
.set_global(default_symmetric_qnnpack_qconfig)
|
|
for pattern in qconfig_mapping.object_type_qconfigs.keys():
|
|
if pattern not in _FIXED_QPARAMS_OP_TO_OBSERVER:
|
|
qconfig_mapping.set_object_type(pattern, default_symmetric_qnnpack_qconfig)
|
|
return qconfig_mapping
|
|
|
|
_QCONFIG_STYLE_ORDER: List[str] = [
|
|
"global_qconfig",
|
|
"object_type_qconfigs",
|
|
"module_name_regex_qconfigs",
|
|
"module_name_qconfigs",
|
|
"module_name_object_type_order_qconfigs",
|
|
]
|
|
|
|
class QConfigMapping:
|
|
"""
|
|
Mapping from model ops to :class:`torch.ao.quantization.QConfig` s.
|
|
|
|
The user can specify QConfigs using the following methods (in increasing match priority):
|
|
|
|
``set_global`` : sets the global (default) QConfig
|
|
|
|
``set_object_type`` : sets the QConfig for a given module type, function, or method name
|
|
|
|
``set_module_name_regex`` : sets the QConfig for modules matching the given regex string
|
|
|
|
``set_module_name`` : sets the QConfig for modules matching the given module name
|
|
|
|
``set_module_name_object_type_order`` : sets the QConfig for modules matching a combination
|
|
of the given module name, object type, and the index at which the module appears
|
|
|
|
Example usage::
|
|
|
|
qconfig_mapping = QConfigMapping()
|
|
.set_global(global_qconfig)
|
|
.set_object_type(torch.nn.Linear, qconfig1)
|
|
.set_object_type(torch.nn.ReLU, qconfig1)
|
|
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
|
|
.set_module_name_regex("foo.*", qconfig2)
|
|
.set_module_name("module1", qconfig1)
|
|
.set_module_name("module2", qconfig2)
|
|
.set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, qconfig3)
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
# In increasing match priority:
|
|
self.global_qconfig: QConfigAny = None
|
|
self.object_type_qconfigs: OrderedDict[Union[Callable, str], QConfigAny] = OrderedDict()
|
|
self.module_name_regex_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
|
|
self.module_name_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
|
|
self.module_name_object_type_order_qconfigs: OrderedDict[Tuple[str, Callable, int], QConfigAny] =\
|
|
OrderedDict()
|
|
|
|
def set_global(self, global_qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the global (default) QConfig.
|
|
"""
|
|
self.global_qconfig = global_qconfig
|
|
return self
|
|
|
|
def set_object_type(self, object_type: Union[Callable, str], qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for a given module type, function, or method name.
|
|
If the QConfig for an existing object type was already set, the new QConfig will override the old one.
|
|
"""
|
|
self.object_type_qconfigs[object_type] = qconfig
|
|
return self
|
|
|
|
def set_module_name_regex(self, module_name_regex: str, qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for modules matching the given regex string.
|
|
|
|
Regexes will be matched in the order in which they are registered through this method.
|
|
Thus, the caller should register more specific patterns first, e.g.::
|
|
|
|
qconfig_mapping = QConfigMapping()
|
|
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
|
|
.set_module_name_regex("foo.*bar.*", qconfig2)
|
|
.set_module_name_regex("foo.*", qconfig3)
|
|
|
|
In this example, "foo.bar.conv0" would match qconfig1, "foo.bar.linear" would match qconfig2,
|
|
and "foo.baz.relu" would match qconfig3.
|
|
|
|
If the QConfig for an existing module name regex was already set, the new QConfig will override the
|
|
old one while preserving the order in which the regexes were originally registered.
|
|
"""
|
|
self.module_name_regex_qconfigs[module_name_regex] = qconfig
|
|
return self
|
|
|
|
def set_module_name(self, module_name: str, qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for modules matching the given module name.
|
|
If the QConfig for an existing module name was already set, the new QConfig will override the old one.
|
|
"""
|
|
self.module_name_qconfigs[module_name] = qconfig
|
|
return self
|
|
|
|
def set_module_name_object_type_order(
|
|
self,
|
|
module_name: str,
|
|
object_type: Callable,
|
|
index: int,
|
|
qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for modules matching a combination of the given module name, object type,
|
|
and the index at which the module appears.
|
|
|
|
If the QConfig for an existing (module name, object type, index) was already set, the new QConfig
|
|
will override the old one.
|
|
"""
|
|
self.module_name_object_type_order_qconfigs[(module_name, object_type, index)] = qconfig
|
|
return self
|
|
|
|
def __repr__(self) -> str:
|
|
output = self.__class__.__name__ + " ("
|
|
for style_name in _QCONFIG_STYLE_ORDER:
|
|
output += f"\n {style_name}"
|
|
qconfigs = getattr(self, style_name)
|
|
if isinstance(qconfigs, OrderedDict) and len(qconfigs) > 0:
|
|
for key, qconfig in qconfigs.items():
|
|
output += f"\n {key}: {qconfig}"
|
|
else:
|
|
output += f"\n {qconfigs}"
|
|
return output + "\n)"
|
|
|
|
# TODO: remove this
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""
|
|
Convert this ``QConfigMapping`` to a dictionary with the following keys:
|
|
|
|
"" (for global QConfig)
|
|
|
|
"object_type"
|
|
|
|
"module_name_regex"
|
|
|
|
"module_name"
|
|
|
|
"module_name_object_type_order"
|
|
|
|
The values of this dictionary are lists of tuples.
|
|
"""
|
|
return {
|
|
_GLOBAL_DICT_KEY: self.global_qconfig,
|
|
_OBJECT_TYPE_DICT_KEY: list(self.object_type_qconfigs.items()),
|
|
_MODULE_NAME_REGEX_DICT_KEY: list(self.module_name_regex_qconfigs.items()),
|
|
_MODULE_NAME_DICT_KEY: list(self.module_name_qconfigs.items()),
|
|
_MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY: [
|
|
(*k, v) for k, v in self.module_name_object_type_order_qconfigs.items()
|
|
],
|
|
}
|
|
|
|
# TODO: remove this
|
|
@classmethod
|
|
def from_dict(cls, qconfig_dict: Dict[str, Any]) -> QConfigMapping:
|
|
"""
|
|
Create a ``QConfigMapping`` from a dictionary with the following keys (all optional):
|
|
|
|
"" (for global QConfig)
|
|
|
|
"object_type"
|
|
|
|
"module_name_regex"
|
|
|
|
"module_name"
|
|
|
|
"module_name_object_type_order"
|
|
|
|
The values of this dictionary are expected to be lists of tuples.
|
|
"""
|
|
conf = cls()
|
|
if _GLOBAL_DICT_KEY in qconfig_dict:
|
|
conf.set_global(qconfig_dict[_GLOBAL_DICT_KEY])
|
|
for object_type, qconfig in qconfig_dict.get(_OBJECT_TYPE_DICT_KEY, []):
|
|
conf.set_object_type(object_type, qconfig)
|
|
for module_name_regex, qconfig in qconfig_dict.get(_MODULE_NAME_REGEX_DICT_KEY, []):
|
|
conf.set_module_name_regex(module_name_regex, qconfig)
|
|
for module_name, qconfig in qconfig_dict.get(_MODULE_NAME_DICT_KEY, []):
|
|
conf.set_module_name(module_name, qconfig)
|
|
for module_name, object_type, index, qconfig in qconfig_dict.get(_MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY, []):
|
|
conf.set_module_name_object_type_order(module_name, object_type, index, qconfig)
|
|
return conf
|