pytorch/torch/_inductor/overrides.py
XiaobingSuper 4ca2fc485c inductor(CPU): add Conv+binary+unary fusion filter (#90259)
For Conv+binary+unary fusion, we only support conv+add+relu, this PR adds a such check to fix TIMM failed models.
TODO: enable more Conv+binary+unary fusion to improve TIMM models' performance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90259
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/jansel
2022-12-12 06:04:55 +00:00

1279 lines
42 KiB
Python

import copy
import itertools
import logging
import operator
import random
import weakref
from typing import Optional
import numpy
import torch
import torch.nn as nn
from torch import _prims
from torch._dynamo.utils import fake_mode_from_tensors
from torch.fx.experimental.optimization import (
matches_module_pattern,
replace_node_module,
)
from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode
from torch.fx.passes.shape_prop import ShapeProp
from torch.nn import functional as F
from torch.nn.modules.utils import _pair
from torch.nn.utils.fusion import fuse_conv_bn_eval, fuse_conv_bn_weights
from torch.overrides import TorchFunctionMode
from . import config
log = logging.getLogger(__name__)
class AutogradMonkeypatch(TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs=None):
if not kwargs:
kwargs = {}
if func is replacements:
return replacements[func](*args, **kwargs)
return func(*args, **kwargs)
patch_functions = AutogradMonkeypatch
def replace_fx(gm: torch.fx.GraphModule):
# Sometimes patch_functions() misses things already in the graph
for node in reversed(list(gm.graph.nodes)):
if node.op == "call_function" and node.target in replacements:
if (
config.fallback_random
and replacements[node.target] in replacements_using_triton_random
):
continue
with gm.graph.inserting_before(node):
node.replace_all_uses_with(
gm.graph.call_function(
replacements[node.target], node.args, node.kwargs
)
)
gm.graph.erase_node(node)
gm.recompile()
return gm
class UnaryAttr(object):
def __init__(self, op_name: str, scalars_attr=None, algorithm_attr=None):
self.op_name = op_name
self.scalars_attr = scalars_attr if scalars_attr else []
self.algorithm_attr = algorithm_attr if algorithm_attr else ""
super(UnaryAttr, self).__init__()
def __call__(self, unary_module: nn.Module):
if type(unary_module) is nn.ReLU6:
unary_module = nn.Hardtanh(min_val=0, max_val=6)
assert all(hasattr(unary_module, item) for item in self.scalars_attr)
scalars = [getattr(unary_module, item) for item in self.scalars_attr]
algorithm = ""
if self.algorithm_attr:
assert hasattr(unary_module, self.algorithm_attr)
algorithm = getattr(unary_module, self.algorithm_attr)
return self.op_name, scalars, algorithm
class ConvUnary2d(nn.Conv2d):
def __init__(
self,
conv: nn.Module,
unary: Optional[nn.Module],
input_size: list,
):
super(ConvUnary2d, self).__init__(
conv.in_channels,
conv.out_channels,
conv.kernel_size,
conv.stride,
conv.padding,
conv.dilation,
conv.groups,
conv.bias is not None,
conv.padding_mode,
conv.weight.device,
conv.weight.dtype,
)
self._update_module_params(conv, unary, input_size)
def _update_module_params(self, conv, unary, input_size):
self.__dict__ = copy.deepcopy(conv.__dict__)
self.attr = "none"
self.scalars = []
self.algorithm = ""
if unary is not None:
self.attr, self.scalars, self.algorithm = unary_modules_map[
unary.__class__
](unary)
self.weight = torch.nn.Parameter(
torch._C._nn.mkldnn_reorder_conv2d_weight(
self.weight.to_mkldnn(),
self.padding,
self.stride,
self.dilation,
self.groups,
input_size,
),
requires_grad=self.weight.requires_grad,
)
def _conv_forward(self, input, weight, bias):
if self.padding_mode != "zeros":
return torch.ops.mkldnn._convolution_pointwise(
F.pad(
input, self._reversed_padding_repeated_twice, mode=self.padding_mode
),
weight,
bias,
_pair(0),
self.stride,
self.dilation,
self.groups,
self.attr,
self.scalars,
self.algorithm,
)
return torch.ops.mkldnn._convolution_pointwise(
input,
weight,
bias,
self.padding,
self.stride,
self.dilation,
self.groups,
self.attr,
self.scalars,
self.algorithm,
)
def forward(self, input):
return self._conv_forward(input, self.weight, self.bias)
class ConvBinary2d(nn.Conv2d):
def __init__(
self,
conv: nn.Module,
binary_op_name: str,
input_size: list,
):
super(ConvBinary2d, self).__init__(
conv.in_channels,
conv.out_channels,
conv.kernel_size,
conv.stride,
conv.padding,
conv.dilation,
conv.groups,
conv.bias is not None,
conv.padding_mode,
conv.weight.device,
conv.weight.dtype,
)
self._update_module_params(conv, binary_op_name, input_size)
def _update_module_params(self, conv, binary_op_name, input_size):
self.__dict__ = copy.deepcopy(conv.__dict__)
self.binary_attr = binary_op_name
self.binary_alpha = None
self.unary_attr = None
self.unary_scalars = []
self.unary_algorithm = None
self.weight = torch.nn.Parameter(
torch._C._nn.mkldnn_reorder_conv2d_weight(
self.weight.to_mkldnn(),
self.padding,
self.stride,
self.dilation,
self.groups,
input_size,
),
requires_grad=self.weight.requires_grad,
)
def _update_unary_params(self, unary):
self.unary_attr, self.unary_scalars, self.unary_algorithm = unary_modules_map[
unary.__class__
](unary)
def _conv_forward(self, input, other, weight, bias):
if self.padding_mode != "zeros":
return torch.ops.mkldnn._convolution_pointwise(
F.pad(
input, self._reversed_padding_repeated_twice, mode=self.padding_mode
),
other,
weight,
bias,
_pair(0),
self.stride,
self.dilation,
self.groups,
self.binary_attr,
self.binary_alpha,
self.unary_attr,
self.unary_scalars,
self.unary_algorithm,
)
return torch.ops.mkldnn._convolution_pointwise(
input,
other,
weight,
bias,
self.padding,
self.stride,
self.dilation,
self.groups,
self.binary_attr,
self.binary_alpha,
self.unary_attr,
self.unary_scalars,
self.unary_algorithm,
)
def forward(self, input, other):
return self._conv_forward(input, other, self.weight, self.bias)
class ConvBinaryInplace2d(nn.Conv2d):
def __init__(
self,
conv: nn.Module,
binary_op_name: str,
input_size: list,
):
super(ConvBinaryInplace2d, self).__init__(
conv.in_channels,
conv.out_channels,
conv.kernel_size,
conv.stride,
conv.padding,
conv.dilation,
conv.groups,
conv.bias is not None,
conv.padding_mode,
conv.weight.device,
conv.weight.dtype,
)
self._update_module_params(conv, binary_op_name, input_size)
def _update_module_params(self, conv, binary_op_name, input_size):
self.__dict__ = copy.deepcopy(conv.__dict__)
self.binary_attr = binary_op_name
self.binary_alpha = None
self.unary_attr = None
self.unary_scalars = []
self.unary_algorithm = None
self.weight = torch.nn.Parameter(
torch._C._nn.mkldnn_reorder_conv2d_weight(
self.weight.to_mkldnn(),
self.padding,
self.stride,
self.dilation,
self.groups,
input_size,
),
requires_grad=self.weight.requires_grad,
)
def _update_unary_params(self, unary):
self.unary_attr, self.unary_scalars, self.unary_algorithm = unary_modules_map[
unary.__class__
](unary)
def _conv_forward(self, input, other, weight, bias):
if self.padding_mode != "zeros":
return torch.ops.mkldnn._convolution_pointwise_(
F.pad(
input, self._reversed_padding_repeated_twice, mode=self.padding_mode
),
other,
weight,
bias,
_pair(0),
self.stride,
self.dilation,
self.groups,
self.binary_attr,
self.binary_alpha,
self.unary_attr,
self.unary_scalars,
self.unary_algorithm,
)
return torch.ops.mkldnn._convolution_pointwise_(
input,
other,
weight,
bias,
self.padding,
self.stride,
self.dilation,
self.groups,
self.binary_attr,
self.binary_alpha,
self.unary_attr,
self.unary_scalars,
self.unary_algorithm,
)
def forward(self, input, other):
return self._conv_forward(input, other, self.weight, self.bias)
class PackedLinear(nn.Linear):
def __init__(self, linear: nn.Module, input_size: list):
super(PackedLinear, self).__init__(
linear.in_features,
linear.out_features,
linear.bias is not None,
linear.weight.device,
linear.weight.dtype,
)
self._update_module_params(linear, input_size)
def _update_module_params(self, linear, input_size):
self.__dict__ = copy.deepcopy(linear.__dict__)
self.batch_size = int(numpy.prod(input_size) / input_size[-1])
self.packed_weight = torch.nn.Parameter(
torch.ops.mkl._mkl_reorder_linear_weight(
self.weight.to_mkldnn(), self.batch_size
),
requires_grad=self.weight.requires_grad,
)
def forward(self, input):
y = torch.ops.mkl._mkl_linear(
input, self.packed_weight, self.weight, self.bias, self.batch_size
)
return y
class LinearUnary(nn.Linear):
def __init__(
self,
linear: nn.Module,
unary: nn.Module,
):
super(LinearUnary, self).__init__(
linear.in_features,
linear.out_features,
linear.bias is not None,
linear.weight.device,
linear.weight.dtype,
)
self._update_module_params(linear, unary)
def _update_module_params(self, linear, unary):
self.__dict__ = copy.deepcopy(linear.__dict__)
self.attr, self.scalars, self.algorithm = unary_modules_map[unary.__class__](
unary
)
def forward(self, input):
y = torch.ops.mkldnn._linear_pointwise(
input, self.weight, self.bias, self.attr, self.scalars, self.algorithm
)
return y
class LinearBinary(nn.Linear):
def __init__(self, linear: nn.Module, binary_op_name: str):
super(LinearBinary, self).__init__(
linear.in_features,
linear.out_features,
linear.bias is not None,
linear.weight.device,
linear.weight.dtype,
)
self._update_module_params(linear, binary_op_name)
def _update_module_params(self, linear, binary_op_name):
self.__dict__ = copy.deepcopy(linear.__dict__)
self.attr = binary_op_name
def forward(self, input, other):
y = torch.ops.mkldnn._linear_pointwise(
input, other, self.weight, self.bias, self.attr
)
return y
def packed_conv_eval(conv: nn.Module, input_size: list):
assert not (conv.training), "Fusion only for eval!"
return ConvUnary2d(
conv,
None,
input_size,
)
def fused_conv_unary_eval(conv: nn.Module, unary: nn.Module, input_size: list):
assert not (conv.training), "Fusion only for eval!"
return ConvUnary2d(
conv,
unary,
input_size,
)
def fused_conv_binary_eval(conv: nn.Module, binary_op_name: str, input_size: list):
assert not (conv.training), "Fusion only for eval!"
return ConvBinary2d(
conv,
binary_op_name,
input_size,
)
def fused_conv_binary_inplace_eval(
conv: nn.Module, binary_op_name: str, input_size: list
):
assert not (conv.training), "Fusion only for eval!"
return ConvBinaryInplace2d(
conv,
binary_op_name,
input_size,
)
def fused_conv_binary_unary_eval(
conv_binary: nn.Module, unary: nn.Module, input_size: list
):
assert not (conv_binary.training), "Fusion only for eval!"
# reuse origin conv module, and just update its' unary attr.
conv_binary._update_unary_params(unary)
return conv_binary
def is_bfloat16_module(m):
weight_is_bf16 = m.weight.dtype == torch.bfloat16
bias_is_bf16 = m.bias is None or m.bias.dtype == torch.bfloat16
return weight_is_bf16 and bias_is_bf16
def packed_linear_eval(linear: nn.Module, input_size: list):
assert not (linear.training), "Fusion only for eval!"
return PackedLinear(linear, input_size)
def fused_linear_unary_eval(linear: nn.Module, unary: nn.Module, input_size: list):
assert not (linear.training), "Fusion only for eval!"
return LinearUnary(
linear,
unary,
)
def fused_linear_binary_eval(linear: nn.Module, attr: str, input_size: list):
assert not (linear.training), "Fusion only for eval!"
linear_binary = LinearBinary(
linear,
attr,
)
return linear_binary
def check_node_kind(current_node, modules, node_kind):
if not isinstance(current_node, torch.fx.Node):
return False
if current_node.op != "call_module":
return False
if not isinstance(current_node.target, str):
return False
if current_node.target not in modules:
return False
if type(modules[current_node.target]) is not node_kind:
return False
return True
def check_node_is_binary(node):
return (
(node.op == "call_function" and node.target in [torch.add, torch.sub])
or (
node.op == "call_function"
and node.target
in [operator.add, operator.iadd, operator.sub, operator.isub]
)
or (node.op == "call_method" and node.target in ["add", "add_", "sub", "sub_"])
)
def check_binary_op_kwargs_is_default(node):
# For binary op, we hope the kwargs values are the default value:
# torch.sub(add)(input, other, *, alpha=1, out=None).
if len(node.args) > 2:
return False
if len(node.kwargs) > 0:
if "out" in node.kwargs and node.kwargs["out"] is not None:
return False
if "alpha" in node.kwargs and node.kwargs["alpha"] != 1.0:
return False
return True
def check_node_is_add_inplace(node):
return (node.op == "call_function" and node.target in [operator.iadd]) or (
node.op == "call_method" and node.target in ["add_"]
)
def fuse_fx(gm: torch.fx.GraphModule, example_inputs):
is_cpu = all(
example_input.device == torch.device("cpu") for example_input in example_inputs
)
fake_mode = fake_mode_from_tensors(example_inputs)
if config.permute_fusion and not is_cpu:
# For linear permute fusion, we need to check input info to identify
# and perform proper permutation/transpose
ShapeProp(gm, fake_mode=fake_mode).propagate(*example_inputs)
gm = linear_permute_fusion(gm)
gm = permute_linear_fusion(gm)
gm = permute_matmul_fusion(gm)
# make sure the autograd is disabled.
if torch.is_grad_enabled():
return gm
if not (torch.backends.mkldnn.enabled and torch.backends.mkldnn.is_available()):
return gm
if not is_cpu:
return gm
gm = remove_identity(gm)
gm = fuse_conv_bn(gm)
# For binary fusion, we need to check inputs info to make sure
# the binary inputs have same tensor info(device, dtype, and layout).
ShapeProp(gm, fake_mode=fake_mode).propagate(*example_inputs)
gm = fuse_unary(gm)
gm = fuse_binary_inplace(gm)
gm = fuse_binary(gm)
# why re-run fuse_unary? we want to enable conv+binary+unary fusion,
# such as conv+add+relu for vision model.
gm = fuse_unary(gm)
gm = pack_module(gm)
return gm
# check the pattern: (nn.module, F.function) matched.
def matches_module_function_pattern(pattern, node, modules):
if len(node.args) == 0:
return False
if not isinstance(node.args[0], torch.fx.Node) or not isinstance(
node, torch.fx.Node
):
return False
# the first node is call_module
if node.args[0].op != "call_module":
return False
if not isinstance(node.args[0].target, str):
return False
if node.args[0].target not in modules:
return False
if type(modules[node.args[0].target]) is not pattern[0]:
return False
# the second node is call_function
if node.op != "call_function":
return False
if node.target != pattern[1]:
return False
# make sure node.args[0] output is only used by current node.
if len(node.args[0].users) > 1:
return False
return True
def fetch_attr(target: str, mod):
target_atoms = target.split(".")
attr_itr = mod
for i, atom in enumerate(target_atoms):
if not hasattr(attr_itr, atom):
raise RuntimeError(
f"Node referenced nonexistant target {'.'.join(target_atoms[:i])}"
)
attr_itr = getattr(attr_itr, atom)
return attr_itr
def remove_identity(gm: torch.fx.GraphModule):
"""
Removes all identity layers from the module.
"""
class IdentityRemover(torch.fx.Transformer):
def call_module(self, target, args, kwargs):
if isinstance(self.submodules[target], nn.Identity):
assert len(args) == 1
return args[0]
else:
return super().call_module(target, args, kwargs)
return IdentityRemover(gm).transform()
def fuse_conv_bn(gm: torch.fx.GraphModule, inplace=False):
"""
Fuses Convolution/BN layers for inference purposes.
"""
modules_patterns = [
(torch.nn.Conv1d, torch.nn.BatchNorm1d),
(torch.nn.Conv2d, torch.nn.BatchNorm2d),
(torch.nn.Conv3d, torch.nn.BatchNorm3d),
]
module_function_patterns = [
(torch.nn.Conv1d, F.batch_norm),
(torch.nn.Conv2d, F.batch_norm),
(torch.nn.Conv3d, F.batch_norm),
]
modules = dict(gm.named_modules())
for pattern in modules_patterns:
for node in gm.graph.nodes:
if matches_module_pattern(pattern, node, modules):
if len(node.args[0].users) > 1: # Output of conv is used by other nodes
continue
conv = modules[node.args[0].target]
bn = modules[node.target]
eval_mode = all(not n.training for n in [conv, bn])
if not eval_mode:
continue
if not bn.track_running_stats:
continue
fused_conv = fuse_conv_bn_eval(conv, bn)
replace_node_module(node.args[0], modules, fused_conv)
node.replace_all_uses_with(node.args[0])
gm.graph.erase_node(node)
gm.graph.lint()
for pattern in module_function_patterns:
for node in gm.graph.nodes:
if matches_module_function_pattern(pattern, node, modules):
# TODO: support kwargs.
if len(node.args) != 8:
continue
conv = modules[node.args[0].target]
bn_training = node.args[5]
bn_eps = node.args[7]
if conv.training or bn_training:
continue
if type(bn_eps) is not float:
continue
bn_args_is_constant = all(
n.op == "get_attr" and len(n.users) == 1 for n in node.args[1:5]
)
if not bn_args_is_constant:
continue
bn_running_mean = fetch_attr(node.args[1].target, gm)
bn_running_var = fetch_attr(node.args[2].target, gm)
bn_weight = fetch_attr(node.args[3].target, gm)
bn_bias = fetch_attr(node.args[4].target, gm)
if bn_running_mean is None or bn_running_var is None:
continue
fused_conv = copy.deepcopy(conv)
fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights(
fused_conv.weight,
fused_conv.bias,
bn_running_mean,
bn_running_var,
bn_eps,
bn_weight,
bn_bias,
)
replace_node_module(node.args[0], modules, fused_conv)
node.replace_all_uses_with(node.args[0])
gm.graph.erase_node(node)
gm.graph.lint()
gm.recompile()
return gm
def fuse_unary(gm: torch.fx.GraphModule):
modules = dict(gm.named_modules())
for (unary_module, _), (computation_module, fuse_func,) in itertools.product(
unary_modules_map.items(), computation_op_unary_op_fusion_map.items()
):
pattern = (computation_module, unary_module)
for node in gm.graph.nodes:
if matches_module_pattern(pattern, node, modules):
if (
len(node.args[0].users) > 1
): # Output of computation_node is used by other nodes
continue
computation_node = modules[node.args[0].target]
unary_node = modules[node.target]
eval_mode = all(not n.training for n in [computation_node, unary_node])
if not eval_mode:
continue
# TODO: support padding str input("valid", "same").
if type(computation_node) in [nn.Conv2d] and isinstance(
computation_node.padding, str
):
continue
# TODO: support more conv+binary+unary fusion.
if type(computation_node) in [
ConvBinary2d,
ConvBinaryInplace2d,
] and type(unary_node) not in [nn.ReLU]:
continue
# only fuse for linear when the dtype is bf16
if type(computation_node) in [nn.Linear] and not is_bfloat16_module(
computation_node
):
continue
computation_node_input_size = (
node.args[0].args[0].meta.get("tensor_meta").shape
)
fused_module = fuse_func(
computation_node, unary_node, computation_node_input_size
)
replace_node_module(node.args[0], modules, fused_module)
node.replace_all_uses_with(node.args[0])
gm.graph.erase_node(node)
gm.graph.lint()
gm.recompile()
return gm
def _philox_rand_like_meta(input, seed, offset):
return _prims.TensorMeta(input)
def _philox_rand_like(input, seed, offset):
# placeholder only used in tracing
return torch.rand_like(input)
class NormalizedLinearNode:
def __init__(self, node: torch.fx.Node) -> None:
assert node.op == "call_function"
assert node.target in [torch.nn.functional.linear]
self.node: torch.fx.Node = node
def get_input(self) -> torch.fx.Node:
if len(self.node.args) > 0:
return self.node.args[0]
else:
return self.node.kwargs["input"]
def get_weight(self) -> torch.fx.Node:
if len(self.node.args) > 1:
return self.node.args[1]
else:
return self.node.kwargs["weight"]
def get_bias(self) -> torch.fx.Node:
if len(self.node.args) > 2:
return self.node.args[2]
else:
return self.node.kwargs["bias"]
class NormalizedMatmulNode:
def __init__(self, node: torch.fx.Node) -> None:
assert node.op == "call_function"
assert node.target in [torch.bmm, torch.matmul]
self.node: torch.fx.Node = node
def get_input(self) -> torch.fx.Node:
if len(self.node.args) > 0:
return self.node.args[0]
else:
return self.node.kwargs["input"]
def get_other(self) -> torch.fx.Node:
if len(self.node.args) > 1:
return self.node.args[1]
else:
return self.node.kwargs["other"]
def check_permute(node: torch.fx.Node):
ranks = len(node.meta["tensor_meta"].shape)
if len(node.args) > 3:
permutation = [node.args[i] % ranks for i in range(1, ranks + 1)]
elif (
"permutation" in node.kwargs
and node.kwargs["permutation"] is not None
and len(node.kwargs["permutation"]) > 2
):
permutation = [i % ranks for i in node.kwargs["permutation"]]
else:
return False
allowed_permutation = list(range(ranks))
allowed_permutation[-1] = ranks - 2
allowed_permutation[-2] = ranks - 1
return permutation == allowed_permutation
def linear_permute_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in module.graph.nodes:
if (
node.op == "call_method"
and node.target == "permute"
and check_permute(node)
):
if len(node.args) > 0:
input_node = node.args[0]
else:
input_node = node.kwargs["input"]
if (
input_node.op == "call_function"
and input_node.target == torch.nn.functional.linear
):
normalized = NormalizedLinearNode(input_node)
input = normalized.get_input()
weight = normalized.get_weight()
bias = normalized.get_bias()
with module.graph.inserting_before(node):
fused_node = module.graph.call_function(
linear_transpose, args=(input, weight, bias)
)
node.replace_all_uses_with(fused_node)
module.graph.lint()
module.graph.eliminate_dead_code()
module.recompile()
return module
# Y1 = X * W^T + bias
# Y2 = Y1.permute(0, 2, 1)
# ---->
# Y2 = (W * X^T + bias.unsqueeze(-1))^T
def linear_transpose(
input: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor
) -> torch.Tensor:
return torch.matmul(weight, input.transpose(-1, -2)) + bias.unsqueeze(-1)
def permute_linear_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in module.graph.nodes:
if node.op == "call_function" and node.target == torch.nn.functional.linear:
if len(node.args) > 0:
input_node = node.args[0]
else:
input_node = node.kwargs["input"]
if (
input_node.op == "call_method"
and input_node.target == "permute"
and check_permute(input_node)
):
normalized = NormalizedLinearNode(node)
if len(input_node.args) > 0:
input = input_node.args[0]
else:
input = input_node.kwargs["input"]
weight = normalized.get_weight()
bias = normalized.get_bias()
with module.graph.inserting_before(node):
fused_node = module.graph.call_function(
transpose_linear, args=(input, weight, bias)
)
node.replace_all_uses_with(fused_node)
module.graph.lint()
module.graph.eliminate_dead_code()
module.recompile()
return module
def permute_matmul_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in module.graph.nodes:
if node.op == "call_function" and (
node.target == torch.bmm or node.target == torch.matmul
):
normalized = NormalizedMatmulNode(node)
A = normalized.get_input()
B = normalized.get_other()
Atrans = Btrans = False
if A.op == "call_method" and A.target == "permute" and check_permute(A):
Atrans = True
if len(A.args) > 0:
A = A.args[0]
else:
A = A.kwargs["input"]
if B.op == "call_method" and B.target == "permute" and check_permute(B):
Btrans = True
if len(B.args) > 0:
B = B.args[0]
else:
B = B.kwargs["input"]
if Atrans or Btrans:
with module.graph.inserting_before(node):
fused_node = module.graph.call_function(
transpose_matmul,
args=(A, B, Atrans, Btrans),
)
node.replace_all_uses_with(fused_node)
module.graph.lint()
module.graph.eliminate_dead_code()
module.recompile()
return module
# X1 = X.permute(0, 2, 1)
# Y1 = X1 * W1^T + bias1
# ---->
# Y2 = X1.transpose(-1, -2) * W1^T + bias1
def transpose_linear(
input: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor
) -> torch.Tensor:
return torch.matmul(input.transpose(-1, -2), weight.t()) + bias
def transpose_matmul(A: torch.Tensor, B: torch.Tensor, Atrans: bool, Btrans: bool):
if Atrans:
A = A.transpose(-1, -2)
if Btrans:
B = B.transpose(-1, -2)
return torch.matmul(A, B)
def replace_and_fuse_for_binary(
computation_node, node, fuse_func, attr, modules, index_node, index_pointwise
):
computation_node_input_size = (
node.args[index_node].args[0].meta.get("tensor_meta").shape
)
fused_module = fuse_func(computation_node, attr, computation_node_input_size)
replace_node_module(node.args[index_node], modules, fused_module)
node.args[index_node].args = node.args[index_node].args + (
node.args[index_pointwise],
)
node.replace_all_uses_with(node.args[index_node])
def binary_inputs_meta_is_same(binary_node):
tensor0_meta = binary_node.args[0].meta.get("tensor_meta")
tensor1_meta = binary_node.args[1].meta.get("tensor_meta")
if not tensor0_meta or not tensor1_meta:
return False
if (
tensor0_meta.shape != tensor1_meta.shape
or tensor0_meta.stride != tensor1_meta.stride
or tensor0_meta.dtype != tensor1_meta.dtype
):
return False
return True
def fuse_binary(gm: torch.fx.GraphModule):
modules = dict(gm.named_modules())
for node in gm.graph.nodes:
if check_node_is_binary(node) and check_binary_op_kwargs_is_default(node):
for node_kind, fuse_func in computation_op_binary_op_fusion_map.items():
if not isinstance(node.args[0], torch.fx.Node) or not isinstance(
node.args[1], torch.fx.Node
):
continue
if not binary_inputs_meta_is_same(node):
continue
attr = binary_attr[node.target]
index_list = supported_index_list[attr]
for index_dict in index_list:
index_node = index_dict["index_computation"]
index_pointwise = index_dict["index_pointwise"]
if check_node_kind(node.args[index_node], modules, node_kind):
if len(node.args[index_node].users) > 1:
continue
computation_node = modules[node.args[index_node].target]
# TODO: support padding str input("valid", "same").
if type(computation_node) in [nn.Conv2d] and isinstance(
computation_node.padding, str
):
continue
# only fuse for linear when the dtype is bf16
if type(computation_node) in [
nn.Linear
] and not is_bfloat16_module(computation_node):
continue
replace_and_fuse_for_binary(
computation_node,
node,
fuse_func,
attr if attr != "iadd" else "add",
modules,
index_node,
index_pointwise,
)
# Make sure the fused node is post node of node's inputs nodes.
node.append(node.args[index_node])
gm.graph.erase_node(node)
gm.graph.lint()
break
gm.recompile()
return gm
def fuse_binary_inplace(gm: torch.fx.GraphModule):
modules = dict(gm.named_modules())
for node in gm.graph.nodes:
if check_node_is_add_inplace(node) and check_binary_op_kwargs_is_default(node):
for (
node_kind,
fuse_func,
) in computation_op_binary_op_fusion_inplace_map.items():
if not isinstance(node.args[0], torch.fx.Node) or not isinstance(
node.args[1], torch.fx.Node
):
continue
if not binary_inputs_meta_is_same(node):
continue
if check_node_kind(node.args[1], modules, node_kind):
if len(node.args[1].users) > 1:
continue
# make sure the output and input are not same tensor.
if node.args[1].args[0] == node.args[0]:
continue
computation_node = modules[node.args[1].target]
# TODO: support padding str input("valid", "same").
if type(computation_node) in [nn.Conv2d] and isinstance(
computation_node.padding, str
):
continue
replace_and_fuse_for_binary(
computation_node,
node,
fuse_func,
"add",
modules,
1, # conv module index
0, # binary op index
)
# Make sure the fused node is post node of node's inputs nodes.
node.append(node.args[1])
gm.graph.erase_node(node)
gm.graph.lint()
break
gm.recompile()
return gm
def pack_module(gm: torch.fx.GraphModule):
modules = dict(gm.named_modules())
for node in gm.graph.nodes:
if node.op == "call_module":
assert isinstance(node.target, str)
cur_module = modules[node.target]
if type(cur_module) in computation_op_packed_map:
computation_node_input_meta = node.args[0].meta.get("tensor_meta")
if computation_node_input_meta.dtype != torch.float32:
continue
if type(cur_module) in [torch.nn.Linear] and not torch._C.has_mkl:
continue
computation_node_input_size = computation_node_input_meta.shape
if type(cur_module) in [nn.Conv2d] and isinstance(
cur_module.padding, str
):
continue
new_module = computation_op_packed_map[type(cur_module)](
cur_module, computation_node_input_size
)
assert isinstance(new_module, nn.Module)
replace_node_module(node, modules, new_module)
gm.graph.lint()
gm.recompile()
return gm
philox_rand_like = _prims._make_prim(
schema="philox_rand_like(Tensor input, Tensor seed, int offset) -> Tensor",
return_type=_prims.RETURN_TYPE.NEW,
meta=_philox_rand_like_meta,
impl_aten=_philox_rand_like,
doc="",
)
def _philox_seed_like_meta(x):
return _prims.TensorMeta(_philox_seed_like(x))
def _philox_seed_like(x):
# we need a tensor input here so AOT autograd properly captures this
# with just a device input, this becomes a constant
return torch.tensor(random.randrange(2**31), device=x.device, dtype=torch.int32)
philox_seed_like = _prims._make_prim(
schema="philox_seed_like(Tensor other) -> Tensor",
return_type=_prims.RETURN_TYPE.NEW,
meta=_philox_seed_like_meta,
impl_aten=_philox_seed_like,
doc="",
)
def null_ref():
return None
class PhiloxRandomState:
next_offset = 0
seed = {}
last_tracer_ref = null_ref
@classmethod
def reset(cls, tracer=None):
cls.next_offset = 0
cls.seed = {}
cls.last_tracer_ref = weakref.ref(tracer) if tracer is not None else null_ref
@classmethod
def get_seed_offset(cls, x):
modes = torch.fx.experimental.proxy_tensor.get_torch_dispatch_modes()
proxy_modes = [m for m in modes if isinstance(m, ProxyTorchDispatchMode)]
if proxy_modes:
tracer = proxy_modes[0].tracer
if cls.last_tracer_ref() is not tracer:
# tracer changed, need to reset state
cls.reset(tracer)
else:
# no tracer, need to reset state
cls.reset()
device = x.device
if device not in cls.seed:
# Compute the seed just once per trace so that we pass fewer
# things from forward to backward
cls.seed[device] = philox_seed_like(x)
seed = cls.seed[device]
offset = cls.next_offset
cls.next_offset += x.numel()
return seed, offset
class LowmemDropout(torch.autograd.Function):
@staticmethod
def forward(ctx, x, p):
ctx.p = p
scale = float(1.0 / (1.0 - p))
seed, offset = PhiloxRandomState.get_seed_offset(x)
ctx.save_for_backward(seed)
ctx.offset = offset
bool_mask = philox_rand_like(x, seed, offset) > p
return bool_mask.to(x.dtype) * x * scale
@staticmethod
def backward(ctx, grad_output):
p = ctx.p
scale = float(1.0 / (1.0 - p))
(seed,) = ctx.saved_tensors
bool_mask = philox_rand_like(grad_output, seed, ctx.offset) > p
return bool_mask.to(grad_output.dtype) * grad_output * scale, None
@torch.fx.wrap
def lowmem_dropout(input, p=0.5, training=True, inplace=False):
if isinstance(input, torch.fx.Proxy):
# double check we don't FX trace this
return input.tracer.create_proxy(
"call_function",
lowmem_dropout,
(input, p, training),
{},
)
if not training or p == 0:
return input
result = LowmemDropout.apply(input, p)
if inplace:
input.copy_(result)
return result
@torch.fx.wrap
def rand_like(x, **kwargs):
if isinstance(x, torch.fx.Proxy):
# double check we don't FX trace this
return x.tracer.create_proxy("call_function", rand_like, (x), kwargs)
assert kwargs.get("device", x.device) == x.device
seed, offset = PhiloxRandomState.get_seed_offset(x)
return philox_rand_like(x, seed, offset).to(kwargs.get("dtype", torch.float32))
replacements = {torch.nn.functional.dropout: lowmem_dropout, torch.rand_like: rand_like}
# Keep track of any replacement functions that use triton random,
# so they can be avoided when fallback_random is set
replacements_using_triton_random = {lowmem_dropout, rand_like}
computation_op_unary_op_fusion_map = {
nn.Conv2d: fused_conv_unary_eval,
nn.Linear: fused_linear_unary_eval,
ConvBinary2d: fused_conv_binary_unary_eval,
ConvBinaryInplace2d: fused_conv_binary_unary_eval,
}
unary_modules_map = {
nn.ReLU: UnaryAttr("relu"),
nn.Sigmoid: UnaryAttr("sigmoid"),
nn.Tanh: UnaryAttr("tanh"),
nn.Hardswish: UnaryAttr("hardswish"),
nn.LeakyReLU: UnaryAttr("leaky_relu", scalars_attr=["negative_slope"]),
nn.Hardtanh: UnaryAttr("hardtanh", scalars_attr=["min_val", "max_val"]),
nn.GELU: UnaryAttr("gelu", algorithm_attr="approximate"),
nn.ReLU6: UnaryAttr("hardtanh", scalars_attr=["min_val", "max_val"]),
nn.SiLU: UnaryAttr("swish"),
}
binary_attr = {
torch.add: "add", # node.op == "call_function"
"add": "add", # node.op == "call_method"
"add_": "iadd", # node.op == "call_method"
operator.add: "add", # node.op == "call_function"
operator.iadd: "iadd", # node.op == "call_function"
torch.sub: "sub", # node.op == "call_function"
"sub": "sub", # node.op == "call_method"
"sub_": "sub", # node.op == "call_method"
operator.sub: "sub", # node.op == "call_function"
operator.isub: "sub", # node.op == "call_function"
}
computation_op_binary_op_fusion_map = {
nn.Conv2d: fused_conv_binary_eval,
nn.Linear: fused_linear_binary_eval,
}
computation_op_binary_op_fusion_inplace_map = {
nn.Conv2d: fused_conv_binary_inplace_eval,
}
computation_op_packed_map = {
nn.Linear: packed_linear_eval,
nn.Conv2d: packed_conv_eval,
}
# For add: we support conv/linear + other and other + conv
# For sub/add_/sub_, we only support conv/linear - other
# or conv/linear +(-)= other
supported_index_list = {
"add": [
{"index_computation": 0, "index_pointwise": 1},
{"index_computation": 1, "index_pointwise": 0},
],
"iadd": [{"index_computation": 0, "index_pointwise": 1}],
"sub": [{"index_computation": 0, "index_pointwise": 1}],
}