pytorch/torch/_inductor/codegen/triton.py
Bert Maher d3d85e1c3b Emit torch.cuda.synchronize() after every kernel call in inductor (#90472)
Debugging illegal memory access is hard; even CUDA_LAUNCH_BLOCKING=1
and using C10_CUDA_KERNEL_LAUNCH_CHECK doesn't guarantee a useful stack trace.
doesn't necessarily guarantee that you'll get a stack trace pointing to the
right kernel.  This diff adds a config option to force a CUDA synchronize after
every kernel call in inductor, for debugging those tricky cases.

Differential Revision: [D41744967](https://our.internmc.facebook.com/intern/diff/D41744967/)

Differential Revision: [D41744967](https://our.internmc.facebook.com/intern/diff/D41744967)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90472
Approved by: https://github.com/jansel
2022-12-12 04:35:10 +00:00

1521 lines
52 KiB
Python

import collections
import contextlib
import dataclasses
import functools
import itertools
import logging
import math
import operator
from typing import Dict, List
import sympy
import torch
from ..._dynamo import config as dynamo_config
from .. import config, ir, scheduler
from ..ir import ReductionHint
from ..utils import (
free_symbol_startswith,
get_fused_kernel_name,
instance_descriptor,
sympy_product,
sympy_subs,
sympy_symbol,
)
from ..virtualized import ops, V
from .common import (
CSEVariable,
DeferredLine,
ExprPrinter,
IndentedBuffer,
index_prevent_reordering,
Kernel,
OpOverrides,
SizeArg,
TensorArg,
)
log = logging.getLogger(__name__)
def signature_of(arg):
from triton.runtime.jit import JITFunction
if isinstance(arg, TensorArg):
tye = JITFunction._type_of(arg.dtype)
if V.graph.is_unspec_arg(arg.buffer):
# had unwrapped 0d tensor as scalar
new_tye = tye.lstrip("*")
if new_tye in ["fp16", "bf16"]:
return "fp32"
else:
return new_tye
else:
return tye
if isinstance(arg, SizeArg):
return JITFunction._key_of(V.graph.sizevars.size_hint(arg.expr))
raise NotImplementedError(f"unhandled {type(arg)}: {arg}")
def config_of(args):
from ..compile_fx import ALIGNMENT
def is_aligned(x):
if isinstance(x, TensorArg):
return x.buffer not in V.graph.unaligned_buffers
assert isinstance(x, SizeArg)
return V.graph.sizevars.maybe_guard_multiple_of(x.expr, ALIGNMENT)
divisible_by_16 = [i for i, arg in enumerate(args) if is_aligned(arg)]
return instance_descriptor(tuple(divisible_by_16), ())
class TritonPrinter(ExprPrinter):
def _print_ModularIndexing(self, expr):
x, div, mod = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
mod = self.paren(self.doprint(mod))
if div != "1":
x = f"({x} // {div})"
return f"{x} % {mod}"
def _print_IndexingDiv(self, expr):
x, div = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
return f"({x} // {div})"
texpr = TritonPrinter().doprint
def triton_compute_type(dtype):
triton_type_name = str(dtype).split(".")[-1]
if triton_type_name == "bool":
triton_type_name = "int1"
if triton_type_name in ("float16", "bfloat16"):
# float16 math is done in float32 inside the kernel
triton_type_name = "float32"
return f"tl.{triton_type_name}"
def triton_constant(value):
if value == float("inf"):
return 'float("inf")'
elif value == float("-inf"):
return 'float("-inf")'
elif math.isnan(value):
return 'float("nan")'
return repr(value)
class TritonCSEVariable(CSEVariable):
def __init__(self, name):
super().__init__(name)
self.is_scalar = False
def update_on_args(self, args, kwargs):
self.is_scalar = all(
not (isinstance(arg, TritonCSEVariable)) or arg.is_scalar for arg in args
)
class TritonOverrides(OpOverrides):
"""Map element-wise ops to Triton"""
@staticmethod
def to_dtype(x, dtype: torch.dtype):
if dtype == torch.bool:
return f"({x} != 0)"
return f"{x}.to({triton_compute_type(dtype)})"
@staticmethod
def constant(value, dtype):
return triton_constant(value)
@staticmethod
def abs(x):
return f"tl.abs({x})"
@staticmethod
def libdevice_abs(x):
return f"tl.libdevice.abs({x})"
@staticmethod
def exp(x):
return f"tl.exp({x})"
@staticmethod
def libdevice_exp(x):
return f"tl.libdevice.exp({x})"
@staticmethod
def sqrt(x):
return f"tl.sqrt({x})"
@staticmethod
def libdevice_sqrt(x):
return f"tl.libdevice.sqrt({x})"
@staticmethod
def relu(x):
return ops.maximum("0", x)
@staticmethod
def minimum(a, b):
return f"tl.where({a} != {a}, {a}, tl.where({a} < {b}, {a}, {b}))"
@staticmethod
def maximum(a, b):
return f"tl.where({a} != {a}, {a}, tl.where({a} > {b}, {a}, {b}))"
@staticmethod
def where(a, b, c):
return f"tl.where({a}, {b}, {c})"
@staticmethod
def cos(x):
return f"tl.cos({x})"
@staticmethod
def libdevice_cos(x):
return f"tl.libdevice.cos({x})"
@staticmethod
def sin(x):
return f"tl.sin({x})"
@staticmethod
def libdevice_sin(x):
return f"tl.libdevice.sin({x})"
@staticmethod
def index_expr(expr, dtype):
return V.kernel.indexing(expr)[0]
@staticmethod
def masked(mask, body, other):
with V.kernel.mask_loads(mask) as new_mask:
result = body()
return ops.where(
new_mask, result, TritonOverrides.constant(other, torch.float32)
)
@staticmethod
def lgamma(x):
return f"tl.libdevice.lgamma({x})"
@staticmethod
def erf(x):
return f"tl.libdevice.erf({x})"
@staticmethod
def logical_and(a, b):
return f"{a} & {b}"
@staticmethod
def logical_or(a, b):
return f"{a} | {b}"
@staticmethod
def rand(seed, offset, _): # _ here to keep the contract identical to CPU rand op
return f"tl.rand({seed}, {offset})"
@staticmethod
def randn(seed, offset, _): # _ here to keep the contract identical to CPU randn op
return f"tl.randn({seed}, {offset})"
@staticmethod
def rsqrt(x):
return f"tl.libdevice.rsqrt({x})"
@staticmethod
def log1p(x):
return f"tl.libdevice.log1p({x})"
@staticmethod
def expm1(x):
return f"tl.libdevice.expm1({x})"
@staticmethod
def sigmoid(x):
return f"tl.sigmoid({x})"
@staticmethod
def libdevice_sigmoid(x):
return f"1/(1 + tl.libdevice.exp(-({x})))"
@staticmethod
def signbit(x):
# XX: This is wrong for the value -0.0 in floating point
return f"tl.libdevice.signbit({x}) if ({x}).dtype is tl.float32 else {x} < 0"
@staticmethod
def fmod(a, b):
return f"tl.libdevice.fmod({a}, {b})"
@staticmethod
def pow(a, b):
return f"tl.libdevice.pow({a}, {b})"
@staticmethod
def log(x):
return f"tl.log({x})"
@staticmethod
def libdevice_log(x):
return f"tl.libdevice.log({x})"
@staticmethod
def isinf(x):
return f"tl.libdevice.isinf({x})"
@staticmethod
def isnan(x):
return f"tl.libdevice.isnan({x})"
@staticmethod
def round(x):
return f"tl.libdevice.nearbyint({x})"
@staticmethod
def floor(x):
return f"tl.libdevice.floor({x})"
@staticmethod
def floordiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Similar to div_floor_kernel_cuda in pytorch core.
# Notice that // in triton behaves as truncdiv instead of floordiv
quot = f"{a} // {b}"
rem = f"{a} % {b}"
return f"tl.where(({a} < 0) != ({b} < 0), tl.where({rem} != 0, {quot} - 1, {quot}), {quot})"
@staticmethod
def trunc(x):
return f"tl.libdevice.trunc({x})"
@staticmethod
def truncdiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Notice that // in triton behaves as truncdiv instead of floordiv
return f"{a} // {b}"
@staticmethod
def ceil(x):
return f"tl.libdevice.ceil({x})"
@dataclasses.dataclass
class IterationRanges:
"""
Each range tree represents multiple sets of iteration indexing
in a single tiled dimension in the output kernel.
If you have two loops ranges one (4, 3, 2) and another (4, 6),
then the range tree will be:
4 (i0)
3 (i1) 6 (i3)
2 (i2)
Where i0 is shared between both loops, but then the split into
different indexing vars. All loop ranges must iterate over
the same number of elements.
"""
def __init__(
self,
name: str,
var_list: List[sympy.Symbol],
var_ranges: Dict[sympy.Symbol, sympy.Expr],
numel: sympy.Expr,
prefix: str,
divisor=sympy.Integer(1),
length=sympy.Integer(1),
):
super(IterationRanges, self).__init__()
self.name = name
self.var_list = var_list
self.var_ranges = var_ranges
self.numel = numel
self.prefix = prefix
self.divisor = divisor
self.length = length
def is_loop(self):
return self.prefix == "r"
class IterationRangesRoot(IterationRanges):
def __init__(
self,
name: str,
numel: sympy.Expr,
prefix: str,
index: int,
kernel: "Kernel",
pid_cache=None,
):
if pid_cache is None:
pid_cache = {}
super(IterationRangesRoot, self).__init__(
name=name,
var_list=[],
var_ranges={},
numel=numel,
prefix=prefix,
)
self.index = index
self.kernel = kernel
# Store all the nodes in one flat list
self.nodes: Dict[sympy.Expr, IterationRangesEntry] = {}
# This is for re-ordering program ID in triton mm template
# pid_cache["tl.program_id(0)"] = pid_m
self.pid_cache: Dict[str, str] = pid_cache
def cache_clear(self):
for node in self.nodes.values():
node.cache_clear()
def lookup(self, divisor, length):
"""
Lookup a given RangeTreeEntry, creating it if needed
"""
if V.graph.sizevars.maybe_guard_equals(divisor * length, self.numel):
expr = ir.IndexingDiv(sympy_symbol(f"{self.prefix}index"), divisor)
else:
expr = ir.ModularIndexing(
sympy_symbol(f"{self.prefix}index"), divisor, length
)
if expr not in self.nodes:
node = IterationRangesEntry(
f"{self.prefix}{next(V.kernel.iter_vars_count)}",
divisor,
length,
expr,
self,
)
V.kernel.range_tree_nodes[node.symbol()] = node
self.var_list.append(node.symbol())
self.var_ranges[node.symbol()] = length
self.nodes[expr] = node
return self.nodes[expr]
def construct(self, lengths: List[sympy.Expr]):
divisor = sympy.Integer(1)
itervars = []
for length in reversed(lengths):
itervars.append(self.lookup(divisor, length).symbol())
divisor = divisor * length
return list(reversed(itervars))
def vars_and_sizes(self, index: sympy.Expr):
"""Figure out vars from this tree used in index"""
nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols]
nodes = [n for n in nodes if n and n.prefix == self.prefix]
nodes.sort(key=lambda x: V.graph.sizevars.size_hint(x.divisor))
divisor = sympy.Integer(1)
index_vars = []
sizes = []
def add(node):
nonlocal divisor
index_vars.append(node.symbol())
sizes.append(node.length)
divisor = divisor * node.length
for node in nodes:
if not V.graph.sizevars.maybe_guard_equals(node.divisor, divisor):
# fill in unused index var
add(self.lookup(divisor, ir.IndexingDiv(node.divisor, divisor)))
divisor = node.divisor
add(node)
if not V.graph.sizevars.maybe_guard_equals(self.numel, divisor):
# fill in unused index var
add(self.lookup(divisor, ir.IndexingDiv(self.numel, divisor)))
return list(reversed(index_vars)), list(reversed(sizes))
def ranges_code(self):
size = self.kernel.reshape_size_str(self.index, self.prefix)
return f"tl.reshape(tl.arange(0, {self.prefix.upper()}BLOCK), {size})"
def pid_cache_lookup(self, key):
if key in self.pid_cache:
return self.pid_cache[key]
return key
def codegen_header(self, code):
x = self.prefix
if self.is_loop():
code.writeline(f"{self.name} = {x}offset + {x}base")
else:
pid = self.pid_cache_lookup(f"tl.program_id({self.index})")
code.writelines(
[
f"{x}offset = {pid} * {x.upper()}BLOCK",
f"{self.name} = {x}offset + {self.ranges_code()}",
]
)
code.writeline(f"{x}mask = {self.name} < {x}numel")
class IterationRangesEntry(IterationRanges):
def __init__(
self,
name: str,
divisor: sympy.Expr,
length: sympy.Expr,
expr: sympy.Expr,
parent: IterationRanges,
):
super(IterationRangesEntry, self).__init__(
name=name,
numel=parent.numel / length,
var_list=parent.var_list,
var_ranges=parent.var_ranges,
prefix=parent.prefix,
divisor=divisor,
length=length,
)
self.parent = parent
self.codegen = functools.lru_cache(None)(self._codegen)
self.expr = expr
def cache_clear(self):
self.codegen.cache_clear()
def writeline(self, line):
if self.is_loop():
V.kernel.indexing_code.writeline(line)
else:
# lift non-reduction stores outside loop
V.kernel.body.writeline(line)
def _codegen(self):
self.writeline(f"{self.name} = " + texpr(V.kernel.rename_indexing(self.expr)))
return self.name
def symbol(self):
return sympy_symbol(self.name)
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name
class TritonKernel(Kernel):
overrides = TritonOverrides
sexpr = texpr
def __init__(
self,
*groups,
mutations=None,
pid_cache=None,
reduction_hint=ReductionHint.DEFAULT,
):
if pid_cache is None:
pid_cache = {}
super(TritonKernel, self).__init__()
self.numels = [V.graph.sizevars.simplify(s) for s in groups]
self.mutations = mutations
self.range_trees = []
self.range_tree_nodes = {}
self.iter_vars_count = itertools.count()
self.inside_reduction = self.numels[-1] != 1
self._load_mask = None
self.body = IndentedBuffer()
self.indexing_code = IndentedBuffer()
self.suffix = IndentedBuffer()
self.outside_loop_vars = set()
self.initialize_range_tree(pid_cache)
self.reduction_hint = reduction_hint
# define this in a closure to make cache local to object
@functools.lru_cache(None)
def simplify_indexing(index: sympy.Expr):
index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges())
for tree in self.range_trees:
index = self.combine_contiguous_dims(index, tree)
return index
self.simplify_indexing = simplify_indexing
def initialize_range_tree(self, pid_cache):
names = ["xindex", "yindex", "zindex"][: len(self.numels) - 1] + ["rindex"]
for i in range(len(self.numels)):
self.range_trees.append(
IterationRangesRoot(
names[i], self.numels[i], names[i][0], i, self, pid_cache
)
)
for tree in self.range_trees:
# reduction indexing goes inside a loop
if tree.prefix != "r":
tree.codegen_header(self.body)
if self.inside_reduction and self.range_trees[-1].is_loop():
# workaround for this issue:
# https://gist.github.com/jansel/6527126f781559095c5531f98a4235a7
self.body.writeline(f"rbase = {self.range_trees[-1].ranges_code()}")
def disable_reduction(self):
@contextlib.contextmanager
def ctx():
if self.numels[-1] == 1:
assert not self.inside_reduction
yield
return
# calling codegen_body() will flush all the pending buffers
# and write out a reduction loop
self.codegen_body()
self.inside_reduction = False
yield
# flush out any code before opening the next loop
self.codegen_body()
self.inside_reduction = True
return ctx()
def set_ranges(self, *lengths):
assert len(lengths) == len(self.range_trees)
return [
ranges.construct(length)
for length, ranges in zip(lengths, self.range_trees)
]
@staticmethod
def _split_iteration_ranges(
groups: List[sympy.Expr], lengths: List[List[sympy.Expr]]
):
sv = V.graph.sizevars
new_ranges = [[] for _ in groups]
remaining = [sv.simplify(g) for g in groups]
var_count = itertools.count()
def add_range(i, expr):
expr = sv.simplify(expr)
if not sv.maybe_guard_multiple_of(remaining[i], expr):
raise CantSplit()
# guard on the last item out
sv.maybe_guard_equals(remaining[i], expr)
remaining[i] = ir.IndexingDiv(remaining[i], expr)
new_ranges[i].append(expr)
return next(var_count)
def make_combined(size, idx1, idx2):
def getter(flat_vars):
return size * flat_vars[idx1] + flat_vars[idx2]
return getter
return_getters_groups = []
current_group = 0
for length_group in lengths:
return_getters = []
for size in length_group:
if sv.maybe_guard_equals(size, 1):
return_getters.append(lambda _: sympy.Integer(0))
continue
while (
current_group < len(remaining)
and sv.size_hint(remaining[current_group]) == 1
):
# scroll to next group with remaining elements
current_group += 1
if sv.size_hint(size) > sv.size_hint(remaining[current_group]):
# need to break size in two
if not sv.maybe_guard_multiple_of(size, remaining[current_group]):
raise CantSplit()
size1 = remaining[current_group]
size2 = ir.IndexingDiv(size, remaining[current_group])
return_getters.append(
make_combined(
size2,
add_range(current_group, size1),
add_range(current_group + 1, size2),
)
)
else:
return_getters.append(
operator.itemgetter(add_range(current_group, size))
)
return_getters_groups.append(return_getters)
assert all(
V.graph.sizevars.size_hint(s) == 1 for s in remaining
), f"failed to set ranges {remaining} {lengths}"
return new_ranges, return_getters_groups
@classmethod
def is_compatible(cls, groups: List[sympy.Expr], lengths: List[List[sympy.Expr]]):
try:
cls._split_iteration_ranges(groups, lengths)
return True
except CantSplit:
return False
def split_and_set_ranges(self, lengths: List[List[sympy.Expr]]):
"""
We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1).
To do this we need to split up the iteration space of i0 into something like:
for i1 in s0:
for i2 in s1:
i0 = i1*s1 + i2
....
This function matches and resplits lengths to the groups of
this kernel to enable tiled + non-tiled fusions.
"""
groups = [rt.numel for rt in self.range_trees]
if not self.inside_reduction:
groups[-1] = sympy.Integer(1)
if len(lengths) == len(self.range_trees) and all(
V.graph.sizevars.simplify(sympy_product(x) - g) == 0
for x, g in zip(lengths, groups)
):
return self.set_ranges(*lengths)
new_ranges, return_getters_groups = self._split_iteration_ranges(
groups, lengths
)
itervars = list(itertools.chain(*self.set_ranges(*new_ranges)))
return [[fn(itervars) for fn in fns] for fns in return_getters_groups]
def is_indirect_indexing(self, index: sympy.Expr):
# tmpX means indirect indexing
return free_symbol_startswith(index, "tmp")
def combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
"""
More aggressive simplification to merge contiguous dims
"""
if isinstance(index, (sympy.Integer, sympy.Symbol)):
return index
index_vars, sizes = tree.vars_and_sizes(index)
if len(sizes) <= 1:
return index
new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
index_vars, sizes, index_prevent_reordering([index], index_vars, sizes)
)
if new_sizes == sizes:
return index
new_index_vars = tree.construct(new_sizes)
new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars))))
return new_index
def indexing(
self,
index: sympy.Expr,
*,
copy_shape=None,
dense_indexing=False,
):
"""
Compute the index and mask to pass to tl.load() or tl.store()
"""
index = self.simplify_indexing(index)
index_vars = index.free_symbols
index_str = texpr(self.rename_indexing(self.codegen_indexing(index)))
indirect_indexing = self.is_indirect_indexing(index)
need_dense = (
config.triton.dense_indexing
or dense_indexing
or indirect_indexing
or self._load_mask is not None
) and index != 0
have_dense = True
have_loop_vars = False
mask = []
dense_mask = []
for tree in self.range_trees:
if tree.prefix == "r" and not self.inside_reduction:
continue
if index_vars.intersection(tree.var_list):
have_loop_vars = True
have_dense = False
mask.append(f"{tree.prefix}mask")
dense_mask.append(f"{tree.prefix}mask")
if (need_dense and not have_dense) or isinstance(index, sympy.Integer):
index_str = f"{index_str} + tl.zeros({self.dense_size_str()}, tl.int32)"
if isinstance(index, sympy.Integer):
return index_str, "None"
else:
mask = dense_mask
elif not have_loop_vars and copy_shape:
mask = dense_mask
index_str = f"{index_str} + tl.zeros({copy_shape}.shape, tl.int32)"
elif indirect_indexing:
# Use dense mask for indirect_indexing
# See https://github.com/pytorch/torchdynamo/issues/1654
# TODO - An optimization could be to hoist this load outside of
# reduction loop, if it is independent of rmask. Such example can be found in
# https://github.com/pytorch/torchdynamo/issues/1654
index_str = f"{index_str} + tl.zeros({self.dense_size_str()}, tl.int32)"
mask = dense_mask
if self._load_mask:
mask.append(self._load_mask)
elif not mask:
mask = ["None"]
if mask == ["xmask"] and index == 0 and self.range_trees[0].numel == 1:
# This causes a triton error:
# https://github.com/openai/triton/issues/633
mask = ["None"]
if (
index_str in self.cse.varname_map
and self.cse.varname_map[index_str].is_scalar
):
mask = ["None"]
return index_str, " & ".join(map(str, mask))
def var_ranges(self):
return dict(
itertools.chain.from_iterable(
tree.var_ranges.items() for tree in self.range_trees
)
)
def codegen_indexing(self, expr: sympy.Expr):
expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges())
for sym in sorted(expr.free_symbols, key=str):
if sym in self.range_tree_nodes:
self.range_tree_nodes[sym].codegen()
return expr
@contextlib.contextmanager
def mask_loads(self, mask):
"""Context manager to add an additional mask to tl.load/store"""
prior = self._load_mask
if prior:
mask = self.cse.generate(self.compute, f"{mask} & {prior}")
self._load_mask = mask
with self.swap_buffers(self.compute, self.compute):
# TODO(jansel): do we need a reshape here?
yield mask
self._load_mask = prior
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
indirect_indexing = self.is_indirect_indexing(index)
index, mask = self.indexing(index)
if "rmask" in mask:
# This eviction policy heuristic is untested.
# ptillet suggested we should try only doing this for
# the first N-1 loops and not for the final loop.
ep = ", eviction_policy='evict_last'"
else:
ep = ""
# "other" below is a workaround for https://github.com/openai/triton/issues/737
# for bool, even though it's likely subject to the same bug, setting `other` leads
# to LLVM errors so we are skipping it for now
if "tmp" in mask and V.graph.get_dtype(name) != torch.bool:
other = ", other=0"
else:
other = ""
if V.graph.is_unspec_arg(name):
line = var
else:
line = f"tl.load({var} + ({index}), {mask}{ep}{other})"
if V.graph.get_dtype(name) in (torch.float16, torch.bfloat16):
line += ".to(tl.float32)"
if (
self.inside_reduction
and "rmask" not in mask
and "tmp" not in mask
and not indirect_indexing
):
# can lift a common load outside of reduction loop
# One exception is when this is an indirect_load.
tmp = self.cse.generate(self.body, line)
else:
tmp = self.cse.generate(self.loads, line)
if not self.inside_reduction or "rmask" not in mask:
self.outside_loop_vars.add(tmp)
return tmp
def store(self, name, index, value, mode=None):
var = self.args.output(name)
index, mask = self.indexing(index, dense_indexing=True)
if mode is None:
line = f"tl.store({var} + ({index}), {value}, {mask})"
elif mode == "atomic_add":
line = f"tl.atomic_add({var} + ({index}), {value}, {mask})"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(name, line)
if not self.inside_reduction:
self.outside_loop_vars.add(value)
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
assert self.inside_reduction
default = triton_constant(ir.Reduction.default_value(reduction_type, src_dtype))
masks = [f"{tree.prefix}mask" for tree in self.range_trees]
if self._load_mask:
masks.append(self._load_mask)
sizes = [f"{tree.prefix.upper()}BLOCK" for tree in self.range_trees]
sizes[-1] = "1"
reduction_range_prefix = self.range_trees[-1].prefix
reduction_sizes = ["1" for _ in self.range_trees]
reduction_sizes[-1] = f"{reduction_range_prefix.upper()}BLOCK"
if reduction_type == "any":
reduction_type = "max"
dim = len(self.range_trees) - 1
result_var = self.cse.newvar()
if (src_dtype, reduction_type, value) not in self.cse.reduction_cache:
self.cse.reduction_cache[(src_dtype, reduction_type, value)] = result_var
accumulator = f"_{result_var}"
self.body.writeline(
f"{accumulator} = tl.zeros({self.dense_size_str()}, {triton_compute_type(src_dtype)}) + {default}"
)
accumulator_index = None
if reduction_type in {"argmax", "argmin"}:
accumulator_index = f"_{result_var}_index"
self.body.writeline(
f"{accumulator_index} = tl.zeros({self.dense_size_str()}, tl.int64)"
)
updated = value
if reduction_type in {"min", "argmin"}:
masks.append(f"({accumulator} > {value})")
elif reduction_type in {"max", "argmax"}:
masks.append(f"({accumulator} < {value})")
elif reduction_type == "sum":
updated = f"{accumulator} + {value}"
else:
raise NotImplementedError(f"reduction_type {reduction_type}")
cond = " & ".join(masks)
if accumulator_index:
# argmax or argmin
self.compute.writeline(
f"{accumulator_index} = tl.where({cond}, {reduction_range_prefix}index, {accumulator_index})",
)
self.compute.writeline(
f"{accumulator} = tl.where({cond}, {updated}, {accumulator})"
)
if accumulator_index:
# argmax, argmin
self.suffix.writelines(
[
f"{accumulator_index}_reduce = tl.reshape(",
f"\ttl.{reduction_type}({accumulator}, {dim}), [{', '.join(sizes)}]).to(tl.int32)",
f"{accumulator_index}_mask = (tl.reshape(tl.arange(0, {reduction_range_prefix.upper()}BLOCK),",
f"\t[{', '.join(reduction_sizes)}]) == {accumulator_index}_reduce)",
f"{result_var} = tl.reshape(tl.sum(",
f"\ttl.where({accumulator_index}_mask, {accumulator_index}, 0), {dim}), [{', '.join(sizes)}])",
]
)
else:
self.suffix.writeline(
f"{result_var} = tl.reshape(tl.{reduction_type}({accumulator}, {dim}), [{', '.join(sizes)}])"
)
else:
var_name = self.cse.reduction_cache[(src_dtype, reduction_type, value)]
self.suffix.writeline(f"{result_var} = {var_name}")
self.inside_reduction = False
index, mask = self.indexing(index)
assert "rmask" not in index
self.inside_reduction = True
self.outside_loop_vars.add(result_var)
self.cse.store_cache[name] = result_var
if name not in V.graph.removed_buffers:
var = self.args.output(name)
self.suffix.writeline(
DeferredLine(name, f"tl.store({var} + {index}, {result_var}, {mask})")
)
def codegen_body(self):
"""
Concat output code from index_code, loads, compute, stores,
suffix into self.body.
For pointwise kernels, this is called just once at the end.
For reduction kernels, this generates a loop over the reduction
axis.
"""
if not (
self.indexing_code
or self.loads
or self.stores
or self.compute
or self.suffix
):
return
if self.inside_reduction:
self.body.writeline("for roffset in range(0, rnumel, RBLOCK):")
with self.body.indent():
# last range tree is always reduction
self.range_trees[-1].codegen_header(self.body)
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
# invalidate any caches that came from inside the reduction loop
self.cse.invalidate(self.outside_loop_vars)
self.range_trees[-1].cache_clear()
else:
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
self.body.splice(self.suffix)
self.indexing_code.clear()
self.loads.clear()
self.compute.clear()
self.stores.clear()
self.suffix.clear()
def codegen_kernel(self, name=None):
from triton import next_power_of_2
code = IndentedBuffer()
size_hints = [
next_power_of_2(V.graph.sizevars.size_hint(numel)) for numel in self.numels
]
if not self.inside_reduction:
size_hints.pop()
heuristics = "pointwise"
else:
heuristics = "reduction"
if name is None:
code.splice(
f"""
import triton
import triton.language as tl
from {config.inductor_import}.ir import ReductionHint
from {config.inductor_import}.ir import TileHint
from {config.inductor_import}.triton_ops.autotune import {heuristics}
from {config.inductor_import}.utils import instance_descriptor
"""
)
argdefs, _, signature = self.args.python_argdefs()
mutated_args = set()
for mutation in self.mutations:
if mutation in self.args.input_buffers:
mutated_args.add(self.args.input_buffers[mutation])
if mutation in self.args.inplace_buffers:
mutated_args.add(self.args.inplace_buffers[mutation].inner_name)
if mutation in self.args.output_buffers:
mutated_args.add(self.args.output_buffers[mutation])
triton_meta = {
"signature": dict(enumerate(map(signature_of, signature))),
"device": V.graph.scheduler.current_device.index,
"constants": {},
"mutated_arg_names": mutated_args,
}
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
sizearg = SizeArg(f"{tree.prefix}numel", tree.numel)
signature.append(sizearg)
triton_meta["signature"][len(argdefs)] = signature_of(sizearg)
argdefs.append(f"{tree.prefix}numel")
# constexpr version causes issues, see
# https://github.com/pytorch/torchdynamo/pull/1362
# triton_meta["constants"][len(argdefs)] = V.graph.sizevars.size_hint(
# tree.numel
# )
# argdefs.append(f"{tree.prefix}numel: tl.constexpr")
triton_meta["configs"] = [config_of(signature)]
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
argdefs.append(f"{tree.prefix.upper()}BLOCK : tl.constexpr")
if self.inside_reduction:
reduction_hint = self.reduction_hint
heuristics_line = f"""
@{heuristics}(size_hints={size_hints!r},
reduction_hint={reduction_hint},
filename=__file__,
meta={triton_meta!r})
@triton.jit
"""
else:
tile_hint = ""
if len(size_hints) == 2:
if len(signature) == 4: # input, output and 2 args
tile_hint = "tile_hint=TileHint.SQUARE,"
else:
tile_hint = "tile_hint=TileHint.DEFAULT,"
heuristics_line = f"""
@{heuristics}(size_hints={size_hints!r}, {tile_hint}filename=__file__, meta={triton_meta!r})
@triton.jit
"""
code.splice(heuristics_line)
code.writeline(f"def {name or 'KERNEL_NAME'}({', '.join(argdefs)}):")
self.codegen_body()
with code.indent():
if not config.dynamic_shapes:
self.codegen_static_numels(code)
for old, new in self.args.aliases():
code.writeline(f"{old} = {new}")
code.splice(self.body)
if name is not None:
return code.getvalue()
wrapper = IndentedBuffer()
wrapper.writeline("async_compile.triton('''")
wrapper.splice(code.getvalue(), strip=True)
wrapper.writeline("''')")
return wrapper.getvalue()
def codegen_static_numels(self, code):
"""
We get a small speedup from hard coding numels if they are static.
"""
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
if isinstance(V.graph.sizevars.simplify(tree.numel), sympy.Integer):
code.writeline(
f"{tree.prefix}numel = {V.graph.sizevars.size_hint(tree.numel)}"
)
elif not config.dynamic_shapes:
code.writeline(
f"{tree.prefix}numel = {V.graph.sizevars.size_hint(tree.numel)} # dynamic_shapes=False"
)
def reshape_size_str(self, i=None, x=None):
sizes = ["1"] * (len(self.range_trees) - int(self.numels[-1] == 1))
if i is not None:
sizes[i] = f"{x.upper()}BLOCK"
return f"[{', '.join(sizes)}]"
def dense_size_str(self):
sizes = []
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
sizes.append(f"{tree.prefix.upper()}BLOCK")
elif tree.prefix == "r" and tree.numel != 1:
sizes.append("1")
return f"[{', '.join(sizes)}]"
def call_kernel(self, code, name: str):
_, call_args, _ = self.args.python_argdefs()
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
for i in range(len(call_args)):
if V.graph.is_unspec_arg(call_args[i]):
call_args[i] = call_args[i] + ".item()"
grid = []
# TODO(jansel): if there are constants, we shouldn't bother passing them as args
for tree in self.range_trees:
if isinstance(tree.numel, (sympy.Integer, sympy.Symbol)):
expr = texpr(tree.numel)
else:
expr = f"{name}_{tree.prefix}numel"
code.writeline(f"{expr} = {texpr(tree.numel)}")
if tree.prefix != "r" or self.inside_reduction:
call_args.append(expr)
if tree.prefix != "r":
grid.append(expr)
call_args = ", ".join(call_args)
stream_name = code.write_get_cuda_stream(V.graph.scheduler.current_device.index)
code.writeline(
f"{name}.run({call_args}, grid=grid({', '.join(grid)}), stream={stream_name})"
)
def create_cse_var(self, *args, **kwargs):
return TritonCSEVariable(*args, **kwargs)
class TritonScheduling:
def __init__(self, scheduler):
self.scheduler = scheduler
def group_fn(self, sizes):
return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)
def can_fuse(self, node1, node2):
"""
Hook called by Scheduler to determine if the Triton backend
can fuse node1 and node2. These nodes might already be
FusedSchedulerNodes.
"""
_, (numel1, rnumel1) = node1.group
_, (numel2, rnumel2) = node2.group
if node1.is_reduction() and node2.is_reduction():
return numel1 == numel2 and rnumel1 == rnumel2
if not node1.is_reduction() and not node2.is_reduction():
if not (numel1 == numel2 and rnumel1 == rnumel2):
return False
# check for a bad combined tiling
tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1)
tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1)
tiling3 = self.select_tiling(
node1.get_nodes() + node2.get_nodes(), numel1, rnumel1
)
if config.triton.tiling_prevents_pointwise_fusion:
if len(tiling1) > 2:
if len(tiling2) > 2:
return tiling1 == tiling2 == tiling3
else:
return tiling1 == tiling3
elif len(tiling2) > 2:
return tiling2 == tiling3
return True
if not node1.is_reduction() and node2.is_reduction():
assert rnumel1 == 1 and rnumel2 != 1
if numel1 == numel2 * rnumel2:
if not all(
TritonKernel.is_compatible((numel2, rnumel2), n.get_ranges())
for n in node1.get_nodes()
):
return False
if config.triton.tiling_prevents_reduction_fusion:
return self.select_tiling(node1.get_nodes(), numel1) in (
(numel1, 1),
(numel2, rnumel2, 1),
)
return True
return numel1 == numel2
assert node1.is_reduction() and not node2.is_reduction()
# swap args to hit the case above
return self.can_fuse_horizontal(node2, node1)
can_fuse_vertical = can_fuse
can_fuse_horizontal = can_fuse
def codegen_nodes(self, nodes):
"""
Given a set of pre-fused nodes, generate a Triton kernel.
"""
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
node_schedule = []
current_loop_writes = set()
done = set()
def fits_in_main_body(n):
_, (node_numel, node_rnumel) = n.group
return (node_numel == numel and node_rnumel == rnumel) or (
node_numel == numel * rnumel and node_rnumel == 1
)
def fits_outside_reduction(n):
_, (node_numel, node_rnumel) = n.group
return node_numel == numel and node_rnumel == 1 and rnumel != 1
@contextlib.contextmanager
def end_current_reduction_loop():
if current_loop_writes:
# flush out any other runnable nodes to reduce number of loops
for other_node in nodes[index + 1 :]:
if (
node not in done
and fits_in_main_body(other_node)
and not (
current_loop_writes & other_node.recursive_predecessors
)
):
done.add(node)
current_loop_writes.add(node.get_name())
node_schedule.append(node)
if node_schedule and node_schedule[-1] is EnableReduction:
node_schedule.pop()
else:
node_schedule.append(DisableReduction)
yield
node_schedule.append(EnableReduction)
current_loop_writes.clear()
for index, node in enumerate(nodes):
if node in done:
continue
done.add(node)
if fits_in_main_body(node):
if current_loop_writes & node.recursive_predecessors and rnumel != 1:
with end_current_reduction_loop():
pass # need to start a new reduction loop
current_loop_writes.add(node.get_name())
node_schedule.append(node)
elif fits_outside_reduction(node):
with end_current_reduction_loop():
node_schedule.append(node)
else:
raise NotImplementedError(
f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}"
)
if dynamo_config.output_code:
log.info("schedule: %s", node_schedule)
return self.codegen_node_schedule(node_schedule, numel, rnumel)
@staticmethod
def reduction_hint(node):
assert node.is_reduction()
if all(
dep.is_contiguous()
for dep in itertools.chain(node.read_writes.reads, node.read_writes.writes)
):
return ReductionHint.INNER
else:
return node.node.data.reduction_hint
def codegen_node_schedule(self, node_schedule, numel, reduction_numel):
tiled_groups = self.select_tiling(node_schedule, numel, reduction_numel)
reductions = list(
filter(
lambda n: n not in (EnableReduction, DisableReduction)
and n.is_reduction(),
node_schedule,
)
)
if len(reductions) > 0:
hints = [self.reduction_hint(n) for n in reductions]
if hints.count(hints[0]) == len(hints):
reduction_hint_val = hints[0]
else:
reduction_hint_val = ReductionHint.DEFAULT
else:
reduction_hint_val = ReductionHint.DEFAULT
mutations = set()
for node in node_schedule:
if hasattr(node, "get_mutations"):
mutations.update(node.get_mutations())
with TritonKernel(
*tiled_groups, reduction_hint=reduction_hint_val, mutations=mutations
) as kernel:
stack = contextlib.ExitStack()
for node in node_schedule:
if node not in (EnableReduction, DisableReduction):
node.mark_run()
for node in node_schedule:
if node is DisableReduction:
stack.enter_context(kernel.disable_reduction())
elif node is EnableReduction:
stack.close()
else:
node.codegen(kernel.split_and_set_ranges(node.get_ranges()))
wrapper = V.graph.wrapper_code
src_code = kernel.codegen_kernel()
if src_code in wrapper.kernels:
kernel_name = wrapper.kernels[src_code]
else:
fused_name = (
get_fused_kernel_name(node_schedule)
if config.triton.descriptive_kernel_names
else ""
)
kernel_name = "_".join(["triton", fused_name, wrapper.next_kernel_suffix()])
wrapper.kernels[src_code] = kernel_name
subs_name = kernel_name if config.triton.ordered_kernel_names else "triton_"
src_code = src_code.replace("KERNEL_NAME", subs_name)
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
src_code = src_code.replace("#pragma CMT", "#")
wrapper.define_kernel(kernel_name, src_code)
kernel.call_kernel(wrapper, kernel_name)
self.scheduler.free_buffers()
def codegen_sync(self):
V.graph.wrapper_code.writeline("torch.cuda.synchronize()")
@staticmethod
@functools.lru_cache(32)
def candidate_tilings(node):
ranges, reduction_ranges = node.get_ranges()
if len(ranges) <= 1:
return ()
rw = node.pointwise_read_writes()
assert len(rw.range_vars) == len(ranges)
deps = [
dep
for dep in itertools.chain(rw.reads, rw.writes)
if dep.name not in V.graph.removed_buffers
]
write_names = {dep.name for dep in rw.writes}
tilings = []
for dep in deps:
strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars)
assert len(strides) == len(ranges)
try:
split = strides.index(1) + 1
if split == len(ranges):
continue
if all(s == 0 for s in strides[split:]):
# if this is a broadcasted tensor and all dimensions after split are broadcast,
# this is not a real split
continue
except ValueError:
continue
tiled_groups = (
V.graph.sizevars.simplify(sympy_product(ranges[:split])),
V.graph.sizevars.simplify(sympy_product(ranges[split:])),
)
# score by number of elements
score = V.graph.sizevars.size_hint(
sympy_product(
size for size, stride in zip(ranges, strides) if stride != 0
)
)
if dep.name in write_names:
# ngimel said contiguous writes is more important than reads
score *= 2
if CandidateTiling.is_good_size(tiled_groups[0]):
score *= 2
if CandidateTiling.is_good_size(tiled_groups[1]):
score *= 2
if (
V.graph.sizevars.size_hint(
score - sympy_product(itertools.chain(ranges, reduction_ranges))
)
>= 0
):
tilings.append(CandidateTiling(tiled_groups, score, dep.name))
return tilings
@classmethod
def select_tiling(cls, node_schedule, numel, reduction_numel=sympy.Integer(1)):
"""
Heuristics to decide how to tile kernels.
Currently, we tile based on stride-1 dimensions.
Returns:
`(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel`
"""
if reduction_numel != 1 or config.triton.max_tiles <= 1:
# TODO(jansel): should we tile reductions?
return (numel, reduction_numel)
seen_names = set()
candidate_tiles = collections.Counter()
for node in EnableReduction.filter(node_schedule):
for tiling in cls.candidate_tilings(node):
if tiling.name in seen_names:
continue
seen_names.add(tiling.name)
candidate_tiles[tiling.tiling] += tiling.score
ranked_tilings = [tiling for tiling, score in candidate_tiles.most_common()]
if config.triton.max_tiles >= 3:
# Add one 3D tiling choice
for i in range(1, len(ranked_tilings)):
a0, a1 = ranked_tilings[0]
b0, b1 = ranked_tilings[i]
if V.graph.sizevars.size_hint(a1 - b1) == 0:
continue
if V.graph.sizevars.size_hint(a1 - b1) < 0:
# swap so a0 is bigger
a0, a1 = ranked_tilings[i]
b0, b1 = ranked_tilings[0]
assert V.graph.sizevars.size_hint(a1 - b1) > 0
if V.graph.sizevars.maybe_guard_multiple_of(a1, b1):
tiling = (a0, ir.IndexingDiv(a1, b1), b1)
ranked_tilings = [tiling] + ranked_tilings
break # only 1 choice for now
for tiled_groups in ranked_tilings:
new_groups = (*tiled_groups, reduction_numel)
if all(
TritonKernel.is_compatible(new_groups, node.get_ranges())
for node in node_schedule
if isinstance(node, scheduler.SchedulerNode)
):
return new_groups
return (numel, reduction_numel)
def flush(self):
pass
@dataclasses.dataclass
class CandidateTiling:
tiling: List[sympy.Expr]
score: int # higher is better
name: str = None
@staticmethod
def is_good_size(s):
"""Somewhat arbitrary heuristic used to boost scores for some sizes"""
s = V.graph.sizevars.size_hint(s)
return s >= 32 and (s % 32 == 0)
class DisableReduction:
"""
Marker to invoke `kernel.disable_reduction()`. This closes a
reduction loop and allows for pointwise ops to occur on the output
of a reduction.
"""
class EnableReduction:
"""
Marker to end a DisableReduction block.
"""
@staticmethod
def filter(node_schedule):
"""
Get the nodes from node_schedule skipping those in a
DisableReduction block.
"""
disabled = False
for node in node_schedule:
if node in (EnableReduction, DisableReduction):
# Don't tile stuff outside the main reduction loop
disabled = node is DisableReduction
elif disabled:
pass
else:
yield node
class CantSplit(Exception):
pass