mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Enable fp32/bf16 PRelu forward and backward in MkldnnCPU path. Fixes https://github.com/pytorch/pytorch/issues/58896 Pull Request resolved: https://github.com/pytorch/pytorch/pull/60427 Approved by: https://github.com/VitalyFedyunin, https://github.com/ngimel, https://github.com/malfet
37 lines
1.7 KiB
Python
37 lines
1.7 KiB
Python
from torch import Tensor, memory_format
|
|
from typing import Callable, Optional, List, overload, Tuple
|
|
from torch.types import _bool, _dtype, _device
|
|
|
|
# Defined in tools/autograd/templates/python_nn_functions.cpp
|
|
|
|
${dispatched_hints}
|
|
|
|
# Defined in aten/src/ATen/native/mkldnn/Linear.cpp
|
|
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
|
|
|
|
# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
|
|
def mkldnn_reorder_conv2d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ...
|
|
def mkldnn_reorder_conv3d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ...
|
|
|
|
# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
|
|
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
|
|
|
|
# Defined at tools/autograd/templates/python_nn_functions.cpp
|
|
@overload
|
|
def _parse_to(device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *,
|
|
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
|
@overload
|
|
def _parse_to(dtype: _dtype, non_blocking: _bool, copy: _bool, *,
|
|
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
|
@overload
|
|
def _parse_to(tensor: Tensor, non_blocking: _bool, copy: _bool, *,
|
|
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
|
|
|
# Defined in aten/src/ATen/naitve/PadSequence.cpp
|
|
def pad_sequence(sequences: List[Tensor], batch_first: bool = False,
|
|
padding_value: float = ...) -> Tensor: ...
|
|
|
|
def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ...
|
|
|
|
def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ...
|