mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
The big idea is to add `create_unbacked_symfloat` and `create_unbacked_symint` to ShapeEnv, allowing you to allocate symbolic floats/ints corresponding to data you don't know about at compile time. Then, instead of immediately erroring out when you try to call local_scalar_dense on a FakeTensor, we instead create a fresh symint/symfloat and return that. There a bunch of odds and ends that need to be handled: * A number of `numel` calls converted to `sym_numel` * When we finally return from item(), we need to ensure we actually produce a SymInt/SymFloat when appropriate. The previous binding code assumed that you would have to get a normal Python item. I add a pybind11 binding for Scalar (to PyObject only) and refactor the code to use that. There is some trickiness where you are NOT allowed to go through c10::SymInt if there isn't actually any SymInt involved. See comment. * One of our unit tests tripped an implicit data dependent access which occurs when you pass a Tensor as an argument to a sizes parameter. This is also converted to support symbolic shapes * We now support tracking bare SymInt/SymFloat returns in proxy tensor mode (this was already in symbolic-shapes branch) * Whenever we allocate an unbacked symint, we record the stack trace it was allocated at. These get printed when you attempt data dependent access on the symint (e.g., you try to guard on it) * Subtlety: unbacked symints are not necessarily > 1. I added a test for this. These unbacked symints are not very useful right now as you will almost always immediately raise an error later when you try to guard on them. The next logical step is adding an assertion refinement system that lets ShapeEnv learn facts about unbacked symints so it can do a better job eliding guards that are unnecessary. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/90624 Approved by: https://github.com/Skylion007, https://github.com/voznesenskym |
||
|---|---|---|
| .. | ||
| amd_build | ||
| autograd | ||
| bazel_tools | ||
| build_defs | ||
| code_analyzer | ||
| code_coverage | ||
| config | ||
| coverage_plugins_package | ||
| dynamo | ||
| fast_nvcc | ||
| gdb | ||
| iwyu | ||
| jit | ||
| linter | ||
| lite_interpreter | ||
| lldb | ||
| onnx | ||
| pyi | ||
| rules | ||
| setup_helpers | ||
| shared | ||
| stats | ||
| test | ||
| testing | ||
| __init__.py | ||
| bazel.bzl | ||
| BUCK.bzl | ||
| BUCK.oss | ||
| build_libtorch.py | ||
| build_pytorch_libs.py | ||
| download_mnist.py | ||
| extract_scripts.py | ||
| gen_flatbuffers.sh | ||
| gen_vulkan_glsl.py | ||
| gen_vulkan_spv.py | ||
| generate_torch_version.py | ||
| generated_dirs.txt | ||
| git_add_generated_dirs.sh | ||
| git_reset_generated_dirs.sh | ||
| nightly.py | ||
| nvcc_fix_deps.py | ||
| pytorch.version | ||
| README.md | ||
| render_junit.py | ||
| substitute.py | ||
| update_masked_docs.py | ||
| vscode_settings.py | ||
This folder contains a number of scripts which are used as
part of the PyTorch build process. This directory also doubles
as a Python module hierarchy (thus the __init__.py).
Overview
Modern infrastructure:
- autograd - Code generation for autograd. This includes definitions of all our derivatives.
- jit - Code generation for JIT
- shared - Generic infrastructure that scripts in
tools may find useful.
- module_loader.py - Makes it easier to import arbitrary Python files in a script, without having to add them to the PYTHONPATH first.
Build system pieces:
- setup_helpers - Helper code for searching for third-party dependencies on the user system.
- build_pytorch_libs.py - cross-platform script that builds all of the constituent libraries of PyTorch, but not the PyTorch Python extension itself.
- build_libtorch.py - Script for building libtorch, a standalone C++ library without Python support. This build script is tested in CI.
- fast_nvcc - Mostly-transparent wrapper over nvcc that
parallelizes compilation when used to build CUDA files for multiple
architectures at once.
- fast_nvcc.py - Python script, entrypoint to the fast nvcc wrapper.
Developer tools which you might find useful:
- git_add_generated_dirs.sh and git_reset_generated_dirs.sh - Use this to force add generated files to your Git index, so that you can conveniently run diffs on them when working on code-generation. (See also generated_dirs.txt which specifies the list of directories with generated files.)
- stats/test_history.py - Query S3 to display history of a single test across multiple jobs over time.
Important if you want to run on AMD GPU:
- amd_build - HIPify scripts, for transpiling CUDA
into AMD HIP. Right now, PyTorch and Caffe2 share logic for how to
do this transpilation, but have separate entry-points for transpiling
either PyTorch or Caffe2 code.
- build_amd.py - Top-level entry point for HIPifying our codebase.
Tools which are only situationally useful:
- docker - Dockerfile for running (but not developing) PyTorch, using the official conda binary distribution. Context: https://github.com/pytorch/pytorch/issues/1619
- download_mnist.py - Download the MNIST dataset; this is necessary if you want to run the C++ API tests.
- run-clang-tidy-in-ci.sh - Responsible for checking that C++ code is clang-tidy clean in CI on Travis