pytorch/test/jit/test_module_interface.py
David Berard bac26155e7 [JIT] Allow freezing modules that contain mutable interfaces (#86039)
This PR allows freezing modules like the one below:
```python
# Ex. 1
        @torch.jit.interface
        class ModuleInterface(torch.nn.Module):
            def forward(self, inp: torch.Tensor) -> torch.Tensor:
                pass

        class ImplementsInterface(torch.nn.Module):
            def __init__(self):
                super(ImplementsInterface, self).__init__()
                self.sum = torch.zeros((2, 2))

            def forward(self, inp: torch.Tensor) -> torch.Tensor:
                self.sum += inp.relu()  # this makes the interface-implementing module mutable
                                        # and previously this would prevent freezing
                return self.sum

        class WrapperModule(torch.nn.Module):
            impl: ModuleInterface

            def __init__(self):
                super().__init__()
                self.impl = ImplementsInterface()

            def forward(self, x: torch.Tensor) -> torch.Tensor:
                return self.impl.forward(x)
```

Previously during freezing, we handle interfaces as shown below:
1. we inline interfaces in any preserved method graphs
2. during `cleanupFrozenModule`, we try to simplify the module data structure (<- this part is unrelated to freezing so far). During this step, if we found that a interface type was mutable, we'd error out; because of the possibility of a module that _swaps out the value of an interface-typed attribute at runtime_.

Below is an example of a module that swaps out the value of an interface-typed attribute at runtime:
```python
# Ex. 2
class MyBadModule(torch.nn.Module):
    impl: MyInterface
    option1: IfaceImpl1
    option2: IfaceImpl2
    ....
    def forward(self, x):
        if x > 0:
            self.impl = self.option1
        else:
            self.impl = self.option2
        ....
```

^ this type of situation cannot be supported by freezing (or at least would be difficult to do correctly) because it greatly complicates the details of handling types and simplifying the module data structure.

But we can still support the first example without _too_ much work:
1. inline the interface code as before
2. check to see if we have any setattrs on interface types; if so, error out
3. otherwise, replace the type of the interface types with the concrete type implementation
4. continue simplifying the module data structure as if we never had any interfaces.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86039
Approved by: https://github.com/eellison
2022-10-08 00:38:11 +00:00

685 lines
23 KiB
Python

# Owner(s): ["oncall: jit"]
from typing import List, Any
import torch
import torch.nn as nn
import os
import sys
from torch import Tensor
from torch.testing._internal.jit_utils import JitTestCase, make_global
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class OrigModule(nn.Module):
def __init__(self):
super(OrigModule, self).__init__()
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 + inp2 + 1
def two(self, input: Tensor) -> Tensor:
return input + 2
def forward(self, input: Tensor) -> Tensor:
return input + self.one(input, input) + 1
class NewModule(nn.Module):
def __init__(self):
super(NewModule, self).__init__()
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
def forward(self, input: Tensor) -> Tensor:
return self.one(input, input + 1)
class TestModuleInterface(JitTestCase):
def test_not_submodule_interface_call(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
class TestNotModuleInterfaceCall(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestNotModuleInterfaceCall, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.two(input)
with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "self.proxy_mod.two"):
torch.jit.script(TestNotModuleInterfaceCall())
def test_module_interface(self):
@torch.jit.interface
class OneTwoModule(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def two(self, x: Tensor) -> Tensor:
pass
def forward(self, x: Tensor) -> Tensor:
pass
@torch.jit.interface
class OneTwoClass(object):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def two(self, x: Tensor) -> Tensor:
pass
class FooMod(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x + y
def two(self, x: Tensor) -> Tensor:
return 2 * x
def forward(self, x: Tensor) -> Tensor:
return self.one(self.two(x), x)
class BarMod(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x * y
def two(self, x: Tensor) -> Tensor:
return 2 / x
def forward(self, x: Tensor) -> Tensor:
return self.two(self.one(x, x))
@torch.jit.export
def forward2(self, x: Tensor) -> Tensor:
return self.two(self.one(x, x)) + 1
make_global(OneTwoModule, OneTwoClass)
def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor):
return mod_list[0].forward(x) + mod_list[1].forward(x)
def use_class_interface(mod_list: List[OneTwoClass], x: Tensor) -> Tensor:
return mod_list[0].two(x) + mod_list[1].one(x, x)
scripted_foo_mod = torch.jit.script(FooMod())
scripted_bar_mod = torch.jit.script(BarMod())
self.checkScript(use_module_interface,
([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
self.checkScript(use_class_interface,
([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
def call_module_interface_on_other_method(mod_interface: OneTwoModule, x: Tensor) -> Tensor:
return mod_interface.forward2(x)
# ensure error out when we call the module on the method other than the interface specified.
with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "mod_interface.forward2"):
self.checkScript(call_module_interface_on_other_method, (scripted_bar_mod, torch.rand(3, 4),))
def test_module_doc_string(self):
@torch.jit.interface
class TestInterface(nn.Module):
def one(self, inp1, inp2):
# type: (Tensor, Tensor) -> Tensor
pass
def forward(self, input):
# type: (Tensor) -> Tensor
r"""stuff 1"""
r"""stuff 2"""
pass
r"""stuff 3"""
class TestModule(nn.Module):
proxy_mod : TestInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input):
# type: (Tensor) -> Tensor
return self.proxy_mod.forward(input)
input = torch.randn(3, 4)
self.checkModule(TestModule(), (input,))
def test_module_interface_subtype(self):
@torch.jit.interface
class OneTwoModule(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def two(self, x: Tensor) -> Tensor:
pass
def forward(self, x: Tensor) -> Tensor:
pass
make_global(OneTwoModule)
@torch.jit.script
def as_module_interface(x: OneTwoModule) -> OneTwoModule:
return x
@torch.jit.script
class Foo(object):
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x + y
def two(self, x: Tensor) -> Tensor:
return 2 * x
def forward(self, x: Tensor) -> Tensor:
return self.one(self.two(x), x)
# check class object is not a subtype of module interface
with self.assertRaisesRegex(RuntimeError, "ScriptModule class can be subtype of module interface"):
as_module_interface(Foo())
class WrongMod(nn.Module):
def two(self, x: int) -> int:
return 2 * x
def forward(self, x: Tensor) -> Tensor:
return x + torch.randn(3, self.two(3))
scripted_wrong_mod = torch.jit.script(WrongMod())
# wrong module that is not compatible with module interface
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
as_module_interface(scripted_wrong_mod)
# Check that interface implementations can be contravariant in argument types and covariant in return type.
@torch.jit.interface
class TensorToAny(nn.Module):
def forward(self, input: torch.Tensor) -> Any:
pass
make_global(TensorToAny)
@torch.jit.script
def as_tensor_to_any(x: TensorToAny) -> TensorToAny:
return x
@torch.jit.interface
class AnyToAny(nn.Module):
def forward(self, input: Any) -> Any:
pass
make_global(AnyToAny)
@torch.jit.script
def as_any_to_any(x: AnyToAny) -> AnyToAny:
return x
class TensorToAnyImplA(nn.Module):
def forward(self, input: Any) -> Any:
return input
class TensorToAnyImplB(nn.Module):
def forward(self, input: Any) -> torch.Tensor:
return torch.tensor([1])
class AnyToAnyImpl(nn.Module):
def forward(self, input: Any) -> torch.Tensor:
return torch.tensor([1])
as_tensor_to_any(torch.jit.script(TensorToAnyImplA()))
as_tensor_to_any(torch.jit.script(TensorToAnyImplB()))
as_any_to_any(torch.jit.script(AnyToAnyImpl()))
def test_module_interface_inheritance(self):
with self.assertRaisesRegex(RuntimeError, "does not support inheritance yet. Please directly"):
@torch.jit.interface
class InheritMod(nn.ReLU):
def three(self, x: Tensor) -> Tensor:
return 3 * x
def test_module_swap(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
scripted_mod = torch.jit.script(TestModule())
input = torch.randn(3, 4)
self.assertEqual(scripted_mod(input), 3 * input + 2)
# module swap with module that have the same interface
scripted_mod.proxy_mod = torch.jit.script(NewModule())
self.assertEqual(scripted_mod(input), input * (input + 1) + 1)
# module swap with non-scripted module should throw error
with self.assertRaisesRegex(RuntimeError, "a ScriptModule with non-scripted module"):
scripted_mod.proxy_mod = NewModule()
def test_module_swap_wrong_module(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class NewModuleWrong(nn.Module):
def __init__(self):
super(NewModuleWrong, self).__init__()
def forward(self, input: int) -> int:
return input + 1
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
scripted_mod = torch.jit.script(TestModule())
# module swap with in-compatible interface
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
scripted_mod.proxy_mod = torch.jit.script(NewModuleWrong())
def test_module_swap_no_lazy_compile(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
class NewModuleMethodNotLazyCompile(nn.Module):
def __init__(self):
super(NewModuleMethodNotLazyCompile, self).__init__()
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
def forward(self, input: Tensor) -> Tensor:
return input + 1
scripted_mod = torch.jit.script(TestModule())
# module swap with module that have the same interface, but the method not get
# lazily compiled from forward, user need to export it explicitly for swap to work
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodNotLazyCompile())
class NewModuleMethodManualExport(nn.Module):
def __init__(self):
super(NewModuleMethodManualExport, self).__init__()
@torch.jit.export
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
def forward(self, input: Tensor) -> Tensor:
return input + 1
scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodManualExport())
input = torch.randn(3, 4)
self.assertEqual(scripted_mod(input), input + 1)
def test_module_swap_no_module_interface(self):
# test module swapping with no module interface
class TestNoModuleInterface(nn.Module):
def __init__(self):
super(TestNoModuleInterface, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod(input)
scripted_no_module_interface = torch.jit.script(TestNoModuleInterface())
# proxy mod is swapped with the new ScriptModule that share the same JIT type, should succeed.
scripted_no_module_interface.proxy_mod = torch.jit.script(OrigModule())
# proxy_mod is neither a module interface or have the same JIT type, should fail
with self.assertRaisesRegex(RuntimeError,
r"Expected a value of type '__torch__.jit.test_module_interface.OrigModule \(.*\)' " +
r"for field 'proxy_mod', but found '__torch__.jit.test_module_interface.NewModule \(.*\)'"):
scripted_no_module_interface.proxy_mod = torch.jit.script(NewModule())
def test_script_module_as_interface_swap(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class OrigScriptModule(torch.jit.ScriptModule):
def __init__(self):
super(OrigScriptModule, self).__init__()
@torch.jit.script_method
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 + inp2 + 1
@torch.jit.script_method
def forward(self, input: Tensor) -> Tensor:
return input + self.one(input, input) + 1
class NewScriptModule(torch.jit.ScriptModule):
def __init__(self):
super(NewScriptModule, self).__init__()
@torch.jit.script_method
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
@torch.jit.script_method
def forward(self, input: Tensor) -> Tensor:
return self.one(input, input + 1)
class TestNNModuleWithScriptModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestNNModuleWithScriptModule, self).__init__()
self.proxy_mod = OrigScriptModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
input = torch.randn(3, 4)
scripted_mod = torch.jit.script(TestNNModuleWithScriptModule())
self.assertEqual(scripted_mod(input), 3 * input + 2)
scripted_mod.proxy_mod = NewScriptModule()
self.assertEqual(scripted_mod(input), input * (input + 1) + 1)
# The call to forward of proxy_mod cannot be inlined. Making sure
# Freezing is throwing an error for now.
def test_freeze_module_with_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = 20
def forward(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = 0
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> int:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule() # folded
def forward(self, x):
return self.proxy_mod(x) + self.sub(x)
m = torch.jit.script(TestModule())
m.eval()
mf = torch._C._freeze_module(m._c)
# Assume interface has no aliasing
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
input = torch.tensor([1])
out_s = m.forward(input)
out_f = mf.forward(input)
self.assertEqual(out_s, out_f)
def test_freeze_module_with_setattr_in_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = 20
def forward(self, x):
self.b += 2
return self.b
@torch.jit.export
def getb(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = 0
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> int:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
return self.proxy_mod(x) + self.sub.getb(x)
m = torch.jit.script(TestModule())
m.proxy_mod = m.sub
m.eval()
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_freeze_module_with_inplace_mutation_in_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = torch.tensor([1.5])
def forward(self, x):
self.b[0] += 2
return self.b
@torch.jit.export
def getb(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = torch.tensor([0.5])
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
y = self.proxy_mod(x)
z = self.sub.getb(x)
return y[0] + z[0]
m = torch.jit.script(TestModule())
m.proxy_mod = m.sub
m.sub.b = m.proxy_mod.b
m.eval()
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_freeze_module_with_mutated_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = torch.tensor([1.5])
def forward(self, x):
return self.b
@torch.jit.export
def getb(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = torch.tensor([0.5])
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
self.proxy_mod = self.sub
y = self.proxy_mod(x)
z = self.sub.getb(x)
return y[0] + z[0]
m = torch.jit.script(TestModule())
m.eval()
with self.assertRaisesRegex(RuntimeError, "Freezing does not support SetAttr on an interface type."):
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_freeze_module_with_interface_and_fork(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = torch.tensor([1.5])
def forward(self, x):
self.b[0] += 3.2
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = torch.tensor([0.5])
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
y = self.proxy_mod(x)
z = self.sub(x)
return y + z
class MainModule(torch.nn.Module):
def __init__(self):
super(MainModule, self).__init__()
self.test = TestModule()
def forward(self, x):
fut = torch.jit._fork(self.test.forward, x)
y = self.test(x)
z = torch.jit._wait(fut)
return y + z
m = torch.jit.script(MainModule())
m.eval()
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_module_apis_interface(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input):
return input * 2
@torch.jit.export
def method(self, input):
for module in self.modules():
input = module(input)
return input
with self.assertRaisesRegex(Exception, "Could not compile"):
scripted_mod = torch.jit.script(TestModule())