pytorch/modules/detectron/upsample_nearest_op_test.py
Shen Li 1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00

44 lines
1.2 KiB
Python

import unittest
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep
from hypothesis import given, settings
dyndep.InitOpsLibrary("@/caffe2/modules/detectron:detectron_ops")
class TestUpsampleNearestOp(hu.HypothesisTestCase):
@given(
N=st.integers(1, 3),
H=st.integers(10, 300),
W=st.integers(10, 300),
scale=st.integers(1, 3),
**hu.gcs
)
@settings(deadline=None, max_examples=20)
def test_upsample_nearest_op(self, N, H, W, scale, gc, dc):
C = 32
X = np.random.randn(N, C, H, W).astype(np.float32)
op = core.CreateOperator("UpsampleNearest", ["X"], ["Y"], scale=scale)
def ref(X):
outH = H * scale
outW = W * scale
outH_idxs, outW_idxs = np.meshgrid(
np.arange(outH), np.arange(outW), indexing="ij"
)
inH_idxs = (outH_idxs / scale).astype(np.int32)
inW_idxs = (outW_idxs / scale).astype(np.int32)
Y = X[:, :, inH_idxs, inW_idxs]
return [Y]
self.assertReferenceChecks(device_option=gc, op=op, inputs=[X], reference=ref)
if __name__ == "__main__":
unittest.main()