mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17862 Differential Revision: D14429234 Pulled By: bddppq fbshipit-source-id: 5cb8750bd9db0ff8a179977d2bfbb180265cce81
117 lines
3.1 KiB
Plaintext
117 lines
3.1 KiB
Plaintext
/**
|
|
* Copyright (c) 2016-present, Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* SampleAs by Kaiming He for Mask R-CNN
|
|
X.dim32(0) = L.dim32(0)
|
|
Y's output samples are the samples of X for which L > 0.
|
|
*/
|
|
#include <cfloat>
|
|
|
|
#include "caffe2/core/context_gpu.h"
|
|
#include "modules/detectron/sample_as_op.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
bool SampleAsOp<float, CUDAContext>::RunOnDevice() {
|
|
auto& X = Input(0); // Input data to be sliced
|
|
auto& L = Input(1); // Target data that provide the identity
|
|
|
|
CAFFE_ENFORCE(
|
|
X.dim32(0) == L.dim32(0),
|
|
"X.dim32(0) must be equal to L.dim32(0)",
|
|
"(",
|
|
X.dim32(0),
|
|
" vs. ",
|
|
L.dim32(0),
|
|
")");
|
|
|
|
// copy L to CPU:
|
|
std::vector<int> labels(L.dim32(0));
|
|
context_.CopyBytes<CUDAContext, CPUContext>(
|
|
L.dim32(0) * sizeof(int), L.data<int>(), &labels[0]);
|
|
// Make sure that the copy is finished
|
|
context_.FinishDeviceComputation();
|
|
|
|
int count = 0;
|
|
for (int i = 0; i < L.dim32(0); i++) {
|
|
if (labels[i] > 0) {
|
|
count++;
|
|
}
|
|
}
|
|
assert(count > 0);
|
|
|
|
// resize Y
|
|
vector<int64_t> out_shape(X.sizes().vec());
|
|
out_shape[0] = count;
|
|
auto* Y = Output(0, out_shape, at::dtype<float>()); // Sliced data (Y.dim32(0) = num of (L > 0))
|
|
|
|
const int len = X.size() / X.dim32(0);
|
|
|
|
float* output = Y->mutable_data<float>();
|
|
for (int i = 0; i < L.dim32(0); i++) {
|
|
if (labels[i] > 0) {
|
|
context_.CopyBytes<CUDAContext, CUDAContext>(
|
|
len * sizeof(float), X.data<float>() + i * len, output);
|
|
output += len;
|
|
} // if
|
|
} // i
|
|
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
bool SampleAsGradientOp<float, CUDAContext>::RunOnDevice() {
|
|
auto& X = Input(0);
|
|
auto& L = Input(1);
|
|
auto& dY = Input(2);
|
|
|
|
|
|
auto* dX = Output(0, X.sizes(), at::dtype<float>());
|
|
|
|
// copy L to CPU:
|
|
std::vector<int> labels(L.dim32(0));
|
|
context_.CopyBytes<CUDAContext, CPUContext>(
|
|
L.dim32(0) * sizeof(int), L.data<int>(), &labels[0]);
|
|
// Make sure that the copy is finished
|
|
context_.FinishDeviceComputation();
|
|
|
|
// zero-out dX
|
|
math::Set<float, CUDAContext>(
|
|
dX->size(), 0.f, dX->mutable_data<float>(), &context_);
|
|
|
|
const int len = X.size() / X.dim32(0);
|
|
|
|
const float* input = dY.data<float>();
|
|
for (int i = 0; i < L.dim32(0); i++) {
|
|
if (labels[i] > 0) {
|
|
context_.CopyBytes<CUDAContext, CUDAContext>(
|
|
len * sizeof(float), input, dX->mutable_data<float>() + i * len);
|
|
input += len;
|
|
} // if
|
|
} // i
|
|
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CUDA_OPERATOR(SampleAs, SampleAsOp<float, CUDAContext>);
|
|
REGISTER_CUDA_OPERATOR(
|
|
SampleAsGradient,
|
|
SampleAsGradientOp<float, CUDAContext>);
|
|
} // namespace caffe2
|