mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Addresses https://github.com/pytorch/pytorch/pull/66312#issuecomment-960357403 Pull Request resolved: https://github.com/pytorch/pytorch/pull/67818 Reviewed By: malfet Differential Revision: D32161208 Pulled By: janeyx99 fbshipit-source-id: 076e52ddc8718c74eb2941e867d92bfa4fe70f80
191 lines
7.5 KiB
Python
191 lines
7.5 KiB
Python
###################################################################################################
|
|
# ATTENTION! This test will most probably fail if you install TensorRT 6.0.1 only.
|
|
# That's because it's shipped with older version of ONNX parser not supporting some
|
|
# required features. To make it work please use new version: https://github.com/onnx/onnx-tensorrt
|
|
# Just clone it and do something like this:
|
|
#
|
|
# ~/pt/third_party/onnx-tensorrt$ mkdir build/
|
|
# ~/pt/third_party/onnx-tensorrt$ cd build/
|
|
# ~/pt/third_party/onnx-tensorrt/build$ cmake ..
|
|
# ~/pt/third_party/onnx-tensorrt/build$ make
|
|
# ~/pt/third_party/onnx-tensorrt/build$ sudo cp libnvonnxparser.so.6.0.1 /usr/lib/x86_64-linux-gnu
|
|
#
|
|
# This note is valid for 6.0.1 release only. September 18th, 2019.
|
|
###################################################################################################
|
|
|
|
import os
|
|
import unittest
|
|
|
|
from PIL import Image
|
|
import numpy as np
|
|
import torch
|
|
import torchvision.models as models
|
|
|
|
import pycuda.driver as cuda
|
|
# This import causes pycuda to automatically manage CUDA context creation and cleanup.
|
|
import pycuda.autoinit
|
|
|
|
import tensorrt as trt
|
|
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
|
|
|
|
def allocate_buffers(engine):
|
|
h_input = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(0)),
|
|
dtype=trt.nptype(trt.float32))
|
|
h_output = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(1)),
|
|
dtype=trt.nptype(trt.float32))
|
|
d_input = cuda.mem_alloc(h_input.nbytes)
|
|
d_output = cuda.mem_alloc(h_output.nbytes)
|
|
stream = cuda.Stream()
|
|
return h_input, d_input, h_output, d_output, stream
|
|
|
|
def load_normalized_test_case(input_shape, test_image, pagelocked_buffer, normalization_hint):
|
|
def normalize_image(image):
|
|
c, h, w = input_shape
|
|
image_arr = np.asarray(image.resize((w, h), Image.ANTIALIAS)).transpose([2, 0, 1])\
|
|
.astype(trt.nptype(trt.float32)).ravel()
|
|
if (normalization_hint == 0):
|
|
return (image_arr / 255.0 - 0.45) / 0.225
|
|
elif (normalization_hint == 1):
|
|
return (image_arr / 256.0 - 0.5)
|
|
np.copyto(pagelocked_buffer, normalize_image(Image.open(test_image)))
|
|
return test_image
|
|
|
|
class Test_PT_ONNX_TRT(unittest.TestCase):
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def setUp(self):
|
|
data_path = os.path.join(os.path.dirname(__file__), 'data')
|
|
self.image_files=["binoculars.jpeg", "reflex_camera.jpeg", "tabby_tiger_cat.jpg"]
|
|
for index, f in enumerate(self.image_files):
|
|
self.image_files[index] = os.path.abspath(os.path.join(data_path, f))
|
|
if not os.path.exists(self.image_files[index]):
|
|
raise FileNotFoundError(self.image_files[index] + " does not exist.")
|
|
with open(os.path.abspath(os.path.join(data_path, "class_labels.txt")), 'r') as f:
|
|
self.labels = f.read().split('\n')
|
|
|
|
def build_engine_onnx(self, model_file):
|
|
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(flags = 1) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
|
|
builder_config = builder.create_builder_config()
|
|
builder_config.max_workspace_size = 1 << 33
|
|
with open(model_file, 'rb') as model:
|
|
if not parser.parse(model.read()):
|
|
for error in range(parser.num_errors):
|
|
self.fail("ERROR: {}".format(parser.get_error(error)))
|
|
return builder.build_engine(network, builder_config)
|
|
|
|
def _test_model(self, model_name, input_shape = (3, 224, 224), normalization_hint = 0):
|
|
|
|
model = getattr(models, model_name)(pretrained=True)
|
|
|
|
shape = (1,) + input_shape
|
|
dummy_input = (torch.randn(shape),)
|
|
onnx_name = model_name + ".onnx"
|
|
|
|
torch.onnx.export(model,
|
|
dummy_input,
|
|
onnx_name,
|
|
input_names = [],
|
|
output_names = [],
|
|
verbose=False,
|
|
export_params=True,
|
|
opset_version=9)
|
|
|
|
with self.build_engine_onnx(onnx_name) as engine:
|
|
h_input, d_input, h_output, d_output, stream = allocate_buffers(engine)
|
|
with engine.create_execution_context() as context:
|
|
err_count = 0
|
|
for index, f in enumerate(self.image_files):
|
|
test_case = load_normalized_test_case(input_shape, f,\
|
|
h_input, normalization_hint)
|
|
cuda.memcpy_htod_async(d_input, h_input, stream)
|
|
|
|
context.execute_async_v2(bindings=[d_input, d_output],
|
|
stream_handle=stream.handle)
|
|
cuda.memcpy_dtoh_async(h_output, d_output, stream)
|
|
stream.synchronize()
|
|
|
|
amax = np.argmax(h_output)
|
|
pred = self.labels[amax]
|
|
if "_".join(pred.split()) not in\
|
|
os.path.splitext(os.path.basename(test_case))[0]:
|
|
err_count = err_count + 1
|
|
self.assertLessEqual(err_count, 1, "Too many recognition errors")
|
|
|
|
def test_alexnet(self):
|
|
self._test_model("alexnet", (3, 227, 227))
|
|
|
|
def test_resnet18(self):
|
|
self._test_model("resnet18")
|
|
def test_resnet34(self):
|
|
self._test_model("resnet34")
|
|
def test_resnet50(self):
|
|
self._test_model("resnet50")
|
|
def test_resnet101(self):
|
|
self._test_model("resnet101")
|
|
@unittest.skip("Takes 2m")
|
|
def test_resnet152(self):
|
|
self._test_model("resnet152")
|
|
|
|
def test_resnet50_2(self):
|
|
self._test_model("wide_resnet50_2")
|
|
@unittest.skip("Takes 2m")
|
|
def test_resnet101_2(self):
|
|
self._test_model("wide_resnet101_2")
|
|
|
|
def test_squeezenet1_0(self):
|
|
self._test_model("squeezenet1_0")
|
|
def test_squeezenet1_1(self):
|
|
self._test_model("squeezenet1_1")
|
|
|
|
def test_googlenet(self):
|
|
self._test_model("googlenet")
|
|
def test_inception_v3(self):
|
|
self._test_model("inception_v3")
|
|
|
|
def test_mnasnet0_5(self):
|
|
self._test_model("mnasnet0_5", normalization_hint = 1)
|
|
def test_mnasnet1_0(self):
|
|
self._test_model("mnasnet1_0", normalization_hint = 1)
|
|
|
|
def test_mobilenet_v2(self):
|
|
self._test_model("mobilenet_v2", normalization_hint = 1)
|
|
|
|
def test_shufflenet_v2_x0_5(self):
|
|
self._test_model("shufflenet_v2_x0_5")
|
|
def test_shufflenet_v2_x1_0(self):
|
|
self._test_model("shufflenet_v2_x1_0")
|
|
|
|
def test_vgg11(self):
|
|
self._test_model("vgg11")
|
|
def test_vgg11_bn(self):
|
|
self._test_model("vgg11_bn")
|
|
def test_vgg13(self):
|
|
self._test_model("vgg13")
|
|
def test_vgg13_bn(self):
|
|
self._test_model("vgg13_bn")
|
|
def test_vgg16(self):
|
|
self._test_model("vgg16")
|
|
def test_vgg16_bn(self):
|
|
self._test_model("vgg16_bn")
|
|
def test_vgg19(self):
|
|
self._test_model("vgg19")
|
|
def test_vgg19_bn(self):
|
|
self._test_model("vgg19_bn")
|
|
|
|
@unittest.skip("Takes 13m")
|
|
def test_densenet121(self):
|
|
self._test_model("densenet121")
|
|
@unittest.skip("Takes 25m")
|
|
def test_densenet161(self):
|
|
self._test_model("densenet161")
|
|
@unittest.skip("Takes 27m")
|
|
def test_densenet169(self):
|
|
self._test_model("densenet169")
|
|
@unittest.skip("Takes 44m")
|
|
def test_densenet201(self):
|
|
self._test_model("densenet201")
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|