mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
93 lines
2.8 KiB
Python
93 lines
2.8 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import numpy as np
|
|
from caffe2.python import core, workspace, model_helper
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class LeakyReluTest(hu.HypothesisTestCase):
|
|
def _get_inputs(self, N, C, H, W, order):
|
|
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
|
|
|
|
# default step size is 0.05
|
|
input_data[np.logical_and(
|
|
input_data >= 0, input_data <= 0.051)] = 0.051
|
|
input_data[np.logical_and(
|
|
input_data <= 0, input_data >= -0.051)] = -0.051
|
|
|
|
return input_data,
|
|
|
|
def _get_op(self, device_option, alpha, order, inplace=False):
|
|
outputs = ['output' if not inplace else "input"]
|
|
op = core.CreateOperator(
|
|
'LeakyRelu',
|
|
['input'],
|
|
outputs,
|
|
alpha=alpha,
|
|
device_option=device_option)
|
|
return op
|
|
|
|
def _feed_inputs(self, input_blobs, device_option):
|
|
names = ['input', 'scale', 'bias']
|
|
for name, blob in zip(names, input_blobs):
|
|
self.ws.create_blob(name).feed(blob, device_option=device_option)
|
|
|
|
@given(N=st.integers(2, 3),
|
|
C=st.integers(2, 3),
|
|
H=st.integers(2, 3),
|
|
W=st.integers(2, 3),
|
|
alpha=st.floats(0, 1),
|
|
seed=st.integers(0, 1000),
|
|
**mu.gcs)
|
|
@settings(deadline=1000)
|
|
def test_leaky_relu_gradients(self, gc, dc, N, C, H, W, alpha, seed):
|
|
np.random.seed(seed)
|
|
|
|
op = self._get_op(
|
|
device_option=gc,
|
|
alpha=alpha,
|
|
order='NCHW')
|
|
input_blobs = self._get_inputs(N, C, H, W, "NCHW")
|
|
|
|
self.assertDeviceChecks(dc, op, input_blobs, [0])
|
|
self.assertGradientChecks(gc, op, input_blobs, 0, [0])
|
|
|
|
@given(N=st.integers(2, 10),
|
|
C=st.integers(3, 10),
|
|
H=st.integers(5, 10),
|
|
W=st.integers(7, 10),
|
|
alpha=st.floats(0, 1),
|
|
seed=st.integers(0, 1000))
|
|
def test_leaky_relu_model_helper_helper(self, N, C, H, W, alpha, seed):
|
|
np.random.seed(seed)
|
|
order = 'NCHW'
|
|
arg_scope = {'order': order}
|
|
model = model_helper.ModelHelper(name="test_model", arg_scope=arg_scope)
|
|
model.LeakyRelu(
|
|
'input',
|
|
'output',
|
|
alpha=alpha)
|
|
|
|
input_blob = np.random.rand(N, C, H, W).astype(np.float32)
|
|
|
|
self.ws.create_blob('input').feed(input_blob)
|
|
|
|
self.ws.create_net(model.param_init_net).run()
|
|
self.ws.create_net(model.net).run()
|
|
|
|
output_blob = self.ws.blobs['output'].fetch()
|
|
|
|
assert output_blob.shape == (N, C, H, W)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|