mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
191 lines
6.2 KiB
Python
191 lines
6.2 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given
|
|
import numpy as np
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class ElementwiseSumTest(hu.HypothesisTestCase):
|
|
@given(size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
inputs=st.integers(2, 7),
|
|
inplace=st.booleans(),
|
|
**mu.gcs)
|
|
def test_elementwise_sum(self,
|
|
size,
|
|
input_channels,
|
|
batch_size,
|
|
inputs,
|
|
inplace,
|
|
gc,
|
|
dc):
|
|
op = core.CreateOperator(
|
|
"Sum",
|
|
["X_{}".format(i) for i in range(inputs)],
|
|
["X_0" if inplace else "Y"],
|
|
)
|
|
Xs = [np.random.rand(batch_size, input_channels, size, size).astype(
|
|
np.float32) for _ in range(inputs)]
|
|
self.assertDeviceChecks(dc, op, Xs, [0])
|
|
|
|
|
|
@given(size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
inputs=st.integers(2, 7),
|
|
inplace=st.booleans(),
|
|
**mu.gcs_cpu_ideep)
|
|
def test_elementwise_sum_fallback(self,
|
|
size,
|
|
input_channels,
|
|
batch_size,
|
|
inputs,
|
|
inplace,
|
|
gc,
|
|
dc):
|
|
op = core.CreateOperator(
|
|
"Sum",
|
|
["X_{}".format(i) for i in range(inputs)],
|
|
["X_0" if inplace else "Y"],
|
|
device_option=dc[1]
|
|
)
|
|
Xs = [np.random.rand(batch_size, input_channels, size, size).astype(
|
|
np.float32) for _ in range(inputs)]
|
|
|
|
sum_val = Xs[0]
|
|
workspace.FeedBlob("X_0", Xs[0], dc[0])
|
|
for i, x in enumerate(Xs):
|
|
if i == 0: continue
|
|
sum_val += x
|
|
workspace.FeedBlob("X_{}".format(i), x, dc[1])
|
|
|
|
workspace.RunOperatorOnce(op)
|
|
Y = workspace.FetchBlob("X_0" if inplace else "Y")
|
|
|
|
if not np.allclose(sum_val, Y, atol=0.01, rtol=0.01):
|
|
print(Y.flatten())
|
|
print(sum_val.flatten())
|
|
print(np.max(np.abs(Y - sum_val)))
|
|
self.assertTrue(False)
|
|
|
|
|
|
@given(size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
inputs=st.integers(2, 7),
|
|
inplace=st.booleans(),
|
|
**mu.gcs_cpu_ideep)
|
|
def test_int8_elementwise_sum(self,
|
|
size,
|
|
input_channels,
|
|
batch_size,
|
|
inputs,
|
|
inplace,
|
|
gc,
|
|
dc):
|
|
sum_fp32 = core.CreateOperator(
|
|
"Sum",
|
|
["X_{}".format(i) for i in range(inputs)],
|
|
["X_0" if inplace else "Y"],
|
|
)
|
|
Xs = [np.random.rand(batch_size, input_channels, size, size).astype(
|
|
np.float32) for _ in range(inputs)]
|
|
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
|
|
Xi_scales = []
|
|
Xi_zero_points = []
|
|
for i, X in enumerate(Xs):
|
|
workspace.FeedBlob("X_{}".format(i), X, dc[0])
|
|
if X.min() >= 0:
|
|
Xi_scales.append(np.absolute(X).max() / 0xFF)
|
|
Xi_zero_points.append(0)
|
|
else:
|
|
Xi_scales.append(np.absolute(X).max() / 0x7F)
|
|
Xi_zero_points.append(128)
|
|
|
|
workspace.RunOperatorOnce(sum_fp32)
|
|
Y = workspace.FetchBlob("X_0" if inplace else "Y")
|
|
|
|
if Y.min() >= 0:
|
|
Y_scale = np.absolute(Y).max() / 0xFF
|
|
Y_zero_point = 0
|
|
else:
|
|
Y_scale = np.absolute(Y).max() / 0x7F
|
|
Y_zero_point = 128
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
net = caffe2_pb2.NetDef()
|
|
for i, Xi in enumerate(Xs):
|
|
workspace.FeedBlob("Xi_{}".format(i), Xi, dc[1])
|
|
sw2nhwc = core.CreateOperator(
|
|
"NCHW2NHWC",
|
|
["Xi_{}".format(i)],
|
|
["Xi_{}_nhwc".format(i)],
|
|
device_option=dc[1]
|
|
)
|
|
quantize = core.CreateOperator(
|
|
"Int8Quantize",
|
|
["Xi_{}_nhwc".format(i)],
|
|
["Xi_{}_quantized".format(i)],
|
|
engine="DNNLOWP",
|
|
device_option=dc[1],
|
|
Y_zero_point=Xi_zero_points[i],
|
|
Y_scale=Xi_scales[i],
|
|
)
|
|
net.op.extend([sw2nhwc, quantize])
|
|
|
|
sum = core.CreateOperator(
|
|
"Int8Sum",
|
|
["Xi_{}_quantized".format(i) for i in range(inputs)],
|
|
["Xi_0_quantized" if inplace else "Y_quantized"],
|
|
engine="DNNLOWP",
|
|
device_option=dc[1],
|
|
Y_zero_point=Y_zero_point,
|
|
Y_scale=Y_scale,
|
|
)
|
|
|
|
dequantize = core.CreateOperator(
|
|
"Int8Dequantize",
|
|
["Xi_0_quantized" if inplace else "Y_quantized"],
|
|
["Y_nhwc"],
|
|
engine="DNNLOWP",
|
|
device_option=dc[1],
|
|
)
|
|
|
|
sw2nchw = core.CreateOperator(
|
|
"NHWC2NCHW",
|
|
["Y_nhwc"],
|
|
["Y_out"],
|
|
device_option=dc[1]
|
|
)
|
|
|
|
net.op.extend([sum, dequantize, sw2nchw])
|
|
workspace.RunNetOnce(net)
|
|
Y_out = workspace.FetchBlob("Y_out")
|
|
|
|
MSE = np.square(np.subtract(Y, Y_out)).mean()
|
|
if MSE > 0.005:
|
|
print(Y.flatten())
|
|
print(Y_out.flatten())
|
|
print(np.max(np.abs(Y_out - Y)))
|
|
print("MSE", MSE)
|
|
self.assertTrue(False)
|
|
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|