mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65385 Enables the ZeRO tests to run on windows. Closes https://github.com/pytorch/pytorch/issues/63086. Backend == NCCL was used as a proxy to see if we were running under CUDA, but Windows GPU tests uses Gloo. In this case use Gloo on GPU. For some reason these tests don't seem to test Gloo on GPU with ZeRO in general (picks NCCL backend when GPU is available), so kept that behavior for now. ghstack-source-id: 139003920 Test Plan: CI Reviewed By: mrshenli Differential Revision: D31071181 fbshipit-source-id: 45a76309ac5e882f5aa6c4b130118a68800754bb
1157 lines
46 KiB
Python
1157 lines
46 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import copy
|
|
import itertools
|
|
import os
|
|
import sys
|
|
from contextlib import suppress
|
|
from typing import Any, List, Type, cast
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
if not dist.is_available():
|
|
print("Distributed not available, skipping tests", file=sys.stderr)
|
|
sys.exit(0)
|
|
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
|
|
hook_with_zero_step,
|
|
hook_with_zero_step_interleaved,
|
|
)
|
|
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import (
|
|
allreduce_hook,
|
|
)
|
|
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
|
|
from torch.distributed.optim import ZeroRedundancyOptimizer
|
|
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim import SGD
|
|
from torch.testing._internal import common_distributed, common_utils
|
|
from torch.testing._internal.common_utils import IS_WINDOWS
|
|
|
|
try:
|
|
import torchvision
|
|
HAS_TORCHVISION = True
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
|
|
# Use GLOO on GPU when running CUDA + Windows
|
|
def _get_backend_for_tests():
|
|
return (
|
|
dist.Backend.NCCL if not IS_WINDOWS and torch.cuda.is_available()
|
|
# Windows only has GLOO, but GLOO GPU works. And use GLOO CPU when
|
|
# no GPUs are available.
|
|
else dist.Backend.GLOO
|
|
)
|
|
|
|
BACKEND = _get_backend_for_tests()
|
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
def check_same_model_params(model_a: torch.nn.Module, model_b: torch.nn.Module, message: str = "") -> None:
|
|
for p_a, p_b in zip(model_a.parameters(), model_b.parameters()):
|
|
assert torch.allclose(p_a, p_b, atol=1e-3), f"Model parameters differ\n{p_a} {p_b}\n" + message
|
|
|
|
for b_a, b_b in zip(model_a.buffers(), model_b.buffers()):
|
|
assert torch.allclose(b_a, b_b), f"Model buffers differ {b_a} - {b_b}\n" + message
|
|
|
|
|
|
class TestZeroRedundancyOptimizer(common_distributed.MultiProcessTestCase):
|
|
def setUp(self):
|
|
super(TestZeroRedundancyOptimizer, self).setUp()
|
|
os.environ["WORLD_SIZE"] = str(self.world_size)
|
|
|
|
self._spawn_processes()
|
|
|
|
@property
|
|
def device(self):
|
|
return torch.device(self.rank) if torch.cuda.is_available() else torch.device("cpu")
|
|
|
|
@property
|
|
def world_size(self):
|
|
return 1
|
|
|
|
def tearDown(self):
|
|
try:
|
|
torch.distributed.destroy_process_group()
|
|
except AssertionError:
|
|
pass
|
|
|
|
try:
|
|
os.remove(self.file_name)
|
|
except OSError:
|
|
pass
|
|
|
|
def dist_init(self, rank, world_size=-1, backend=BACKEND):
|
|
if (world_size < 1):
|
|
world_size = self.world_size
|
|
store = dist.FileStore(self.file_name, world_size)
|
|
return dist.init_process_group(backend=backend, store=store, rank=rank, world_size=world_size)
|
|
|
|
|
|
class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer):
|
|
def test_state_dict(self):
|
|
"""Check that the ZeroRedundancyOptimizer exposes the expected state dict interface,
|
|
irrespective of the sharding.
|
|
"""
|
|
self.dist_init(self.rank)
|
|
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
|
|
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.1, momentum=0.9)
|
|
x.backward()
|
|
o.step()
|
|
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
|
|
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
|
|
|
|
o.zero_grad()
|
|
o.consolidate_state_dict() # Sync state dict in between replicas - even if there are none
|
|
state_dict = o.state_dict()
|
|
|
|
# Check that the state dict is pytorch-compliant key wise
|
|
self.assertIn("param_groups", state_dict.keys())
|
|
self.assertIn("state", state_dict.keys())
|
|
|
|
# Check that the pulled state is what we expect, and that we have all the expected keys
|
|
self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1)
|
|
self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9)
|
|
self.assertFalse(state_dict["param_groups"][0]["nesterov"])
|
|
self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0)
|
|
self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0)
|
|
|
|
# Check that the pulled state and the .param_groups attribute are in sync
|
|
for k in state_dict["param_groups"][0].keys():
|
|
if k != "params":
|
|
self.assertEqual(state_dict["param_groups"][0][k], o.param_groups[0][k])
|
|
|
|
# Check that it's correctly loaded
|
|
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
|
|
o.load_state_dict(state_dict)
|
|
|
|
# Check that state is correct and on proper device
|
|
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
|
|
|
|
# We should now be using a lr of 0.1, both within the optimizer
|
|
# and as exposed by the .param_groups attribute
|
|
assert o.param_groups[0]["lr"] == 0.1
|
|
x.backward()
|
|
o.step()
|
|
self.assertEqual(x, torch.tensor([0.71], device=DEVICE))
|
|
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.9], device=DEVICE))
|
|
|
|
# Check that the exposed param_groups are on the proper device
|
|
self.assertEqual(o.param_groups[0]["params"][0].device, x.device)
|
|
|
|
def test_lr_scheduler(self):
|
|
""" Check that a normal torch lr_scheduler is usable with ZeroRedundancyOptimizer"""
|
|
|
|
self.dist_init(self.rank)
|
|
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
|
|
x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
|
|
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
|
|
o2 = torch.optim.SGD([x2], lr=0.01)
|
|
s = torch.optim.lr_scheduler.StepLR(o, 1)
|
|
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
|
|
for _ in range(5):
|
|
x.backward()
|
|
o.zero_grad()
|
|
o.step()
|
|
s.step()
|
|
x2.backward()
|
|
o2.zero_grad()
|
|
o2.step()
|
|
s2.step()
|
|
self.assertEqual(x, x2)
|
|
|
|
def test_step_with_kwargs(self):
|
|
""" Check that the `step(**kwargs)` interface is properly exposed"""
|
|
self.dist_init(self.rank)
|
|
|
|
class SGDWithStepKWArg(torch.optim.SGD):
|
|
def step(self, closure=None, kwarg=None):
|
|
super().step()
|
|
kwarg.append(5)
|
|
|
|
kwarg: List[Any] = []
|
|
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
|
|
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithStepKWArg, lr=0.1)
|
|
x.backward()
|
|
o.step(0, kwarg=kwarg)
|
|
self.assertEqual(kwarg, [5])
|
|
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
|
|
|
|
def test_step_with_extra_inner_key(self):
|
|
"""Check that an optimizer adding extra keys to the param_groups
|
|
is properly handled, in that the new key is exposed to the user
|
|
"""
|
|
self.dist_init(self.rank)
|
|
|
|
class SGDWithNewKey(torch.optim.SGD):
|
|
# Dummy optimizer which adds a new key to the param groups
|
|
def step(self, closure=None):
|
|
super().step()
|
|
self.param_groups[0]["new_key"] = 0.1
|
|
|
|
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
|
|
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithNewKey, lr=0.1)
|
|
x.backward()
|
|
o.step()
|
|
self.assertEqual(o.param_groups[0]["new_key"], 0.1)
|
|
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
|
|
|
|
def test_step_without_closure(self):
|
|
"""Check that the step() method (without closure) is handlded as expected"""
|
|
self.dist_init(self.rank)
|
|
|
|
class SGDWithoutClosure(torch.optim.SGD):
|
|
def step(self):
|
|
return super().step()
|
|
|
|
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
|
|
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithoutClosure, lr=0.1)
|
|
x.backward()
|
|
o.step()
|
|
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
|
|
|
|
def test_zero_grad(self):
|
|
"""Check that the zero_grad attribute is properly handled"""
|
|
self.dist_init(self.rank)
|
|
x = torch.rand(1)
|
|
m = torch.nn.Linear(1, 1)
|
|
o = ZeroRedundancyOptimizer(m.parameters(), optimizer_class=SGD, lr=0.1)
|
|
y = m(x)
|
|
y.backward(x)
|
|
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
|
|
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
|
|
o.zero_grad()
|
|
self.assertFalse(m.weight.grad)
|
|
self.assertFalse(m.bias.grad)
|
|
|
|
def test_constructor(self):
|
|
"""Check the robustness of the ZeroRedundancyOptimizer constructor by
|
|
passing different values for `params`"""
|
|
self.dist_init(self.rank)
|
|
|
|
m = torch.nn.Linear(1, 1)
|
|
# (input, expected error)
|
|
inputs = [
|
|
([], ValueError), # empty parameter list
|
|
(torch.randn(1), TypeError), # non-iterable: `torch.Tensor`
|
|
(1.2, TypeError), # non-iterable: `float`
|
|
([{"params": m.parameters()}], TypeError), # iterable of dict
|
|
(list(m.parameters()) + [42], TypeError), # iterable containing non-`torch.Tensor`
|
|
(m.parameters(), None), # `params` as a generator
|
|
(list(m.parameters()), None) # `params` as a list
|
|
]
|
|
|
|
for input, error in inputs:
|
|
if (error):
|
|
with self.assertRaises(error):
|
|
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
|
|
else:
|
|
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
|
|
|
|
def test_same_dense_param_type(self):
|
|
"""Check that ZeroRedundancyOptimizer raises an exception if the input
|
|
parameters include sparse tensors or different dense types.
|
|
|
|
NOTE: This test should be removed once support for sparse parameters
|
|
and varying parameter types is added.
|
|
"""
|
|
self.dist_init(self.rank)
|
|
|
|
inputs = [
|
|
[torch.sparse_coo_tensor(size=(2, 3))],
|
|
[torch.FloatTensor(1), torch.DoubleTensor(1)],
|
|
[torch.FloatTensor(1), torch.FloatTensor(1),
|
|
torch.sparse_coo_tensor(size=(2, 3))]
|
|
]
|
|
for input in inputs:
|
|
with self.assertRaises(ValueError):
|
|
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
|
|
|
|
|
|
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
|
|
@property
|
|
def world_size(self):
|
|
return min(4, max(2, torch.cuda.device_count()))
|
|
|
|
@common_distributed.skip_if_rocm
|
|
def test_step(self):
|
|
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step()` interface"""
|
|
|
|
if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2):
|
|
return
|
|
|
|
self.dist_init(self.rank, world_size=self.world_size)
|
|
|
|
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
|
|
|
|
with context:
|
|
x = torch.tensor([float(self.rank + 1)], device=self.device)
|
|
m = torch.nn.Linear(1, 1)
|
|
m.weight.data = torch.tensor([[1.0]])
|
|
m.bias.data = torch.tensor([2.0])
|
|
m_zero = copy.deepcopy(m)
|
|
m.to(self.device)
|
|
m_zero.to(self.device)
|
|
|
|
lr = 0.1
|
|
o = SGD(m.parameters(), lr=lr)
|
|
o_zero = ZeroRedundancyOptimizer(m_zero.parameters(), optimizer_class=SGD, lr=lr)
|
|
|
|
y = m(x)
|
|
y.backward(x)
|
|
y_zero = m_zero(x)
|
|
y_zero.backward(x)
|
|
|
|
for p in m.parameters():
|
|
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
|
|
p.grad.data /= self.world_size
|
|
o.step()
|
|
for p in m_zero.parameters():
|
|
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
|
|
p.grad.data /= self.world_size
|
|
o_zero.step()
|
|
|
|
self.assertEqual(m.weight, m_zero.weight)
|
|
self.assertEqual(m.bias, m_zero.bias)
|
|
|
|
@common_distributed.skip_if_rocm
|
|
def test_step_with_closure(self):
|
|
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step(closure)` interface"""
|
|
|
|
if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2):
|
|
return
|
|
|
|
self.dist_init(self.rank, world_size=self.world_size)
|
|
|
|
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
|
|
|
|
with context:
|
|
for bucket_view in [False, True]:
|
|
x_val = self.rank + 1
|
|
weight = 1.0
|
|
bias = 2.0
|
|
error = 1.0
|
|
target = torch.tensor([x_val * weight + bias + error], device=self.device)
|
|
loss_fn = torch.nn.L1Loss()
|
|
|
|
x = torch.tensor([float(x_val)], device=self.device)
|
|
m = torch.nn.Linear(1, 1)
|
|
m.weight.data = torch.tensor([[weight]])
|
|
m.bias.data = torch.tensor([bias])
|
|
m.to(self.device)
|
|
|
|
o = ZeroRedundancyOptimizer(
|
|
m.parameters(),
|
|
optimizer_class=SGD,
|
|
parameters_as_bucket_view=bucket_view,
|
|
lr=0.1,
|
|
)
|
|
|
|
y = m(x)
|
|
y.backward(x)
|
|
for p in m.parameters():
|
|
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
|
|
p.grad.data /= self.world_size
|
|
|
|
def closure():
|
|
o.zero_grad()
|
|
output = m(x)
|
|
loss = loss_fn(output, target)
|
|
loss.backward()
|
|
return loss
|
|
|
|
loss = o.step(closure=closure)
|
|
|
|
self.assertEqual(loss, torch.tensor(error))
|
|
self.assertEqual(m.weight, torch.tensor([[1.1]]))
|
|
self.assertEqual(m.bias, torch.tensor([2.1]))
|
|
|
|
def test_sharding(self):
|
|
""" Check the sharding at construction time
|
|
|
|
NOTE: The correctness of this test depends on the ZeRO implementation
|
|
using the sorted-greedy partitioning algorithm. For details, see
|
|
`ZeroRedundancyOptimizer._partition_parameters()` in
|
|
`zero_redundancy_optimizer.py`.
|
|
"""
|
|
self.dist_init(self.rank)
|
|
sizes = [9, 7, 5, 3]
|
|
params = []
|
|
for size in sizes * self.world_size:
|
|
params.append(torch.rand(size, 1))
|
|
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
|
|
self.assertEqual(sum([x.numel() for x in o.optim.param_groups[0]["params"]]), sum(sizes))
|
|
|
|
def test_add_param_group(self):
|
|
"""Check that ZeroRedundancyOptimizer properly handles adding a new param_group a posteriori,
|
|
and that all ranks get a shard
|
|
|
|
NOTE: The correctness of this test depends on the ZeRO implementation
|
|
using the sorted-greedy partitioning algorithm. For details, see
|
|
`ZeroRedundancyOptimizer._partition_parameters()` in
|
|
`zero_redundancy_optimizer.py`.
|
|
"""
|
|
self.dist_init(self.rank)
|
|
|
|
# Test with all parameters trainable to begin with
|
|
def all_trainable():
|
|
params = []
|
|
sizes = [9, 7, 5, 3]
|
|
sizes_world = sizes * self.world_size
|
|
for size in sizes_world[:-1]:
|
|
params.append(torch.rand(size, 1))
|
|
|
|
# Make sure that the params are trainable, enforces size-based partitioning
|
|
for p in params:
|
|
p.requires_grad = True
|
|
|
|
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
|
|
|
|
assert len(o.param_groups) == 1
|
|
o.add_param_group({"params": [torch.rand(3, 1)]})
|
|
|
|
assert len(o.param_groups) == 2
|
|
# Verify that added group is added to the correct partition making all have the same elements.
|
|
assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
|
|
assert len(o.optim.param_groups) == 2
|
|
|
|
# Test a pathological config with a first big non-trainable param
|
|
def some_trainable():
|
|
params = []
|
|
for size in [100, 3, 5, 2, 6, 4]:
|
|
params.append(torch.rand(size, 1))
|
|
|
|
# Make sure that the params are trainable, enforces size-based partitioning
|
|
for p in params[1:]:
|
|
p.requires_grad = True
|
|
|
|
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
|
|
|
|
assert len(o.param_groups) == 1
|
|
o.add_param_group({"params": [torch.rand(3, 1)]})
|
|
|
|
assert len(o.param_groups) == 2
|
|
assert len(o.optim.param_groups) == 2
|
|
|
|
all_trainable()
|
|
some_trainable()
|
|
|
|
@common_distributed.skip_if_lt_x_gpu(2)
|
|
def test_collect_shards(self):
|
|
""" Check the state consolidation mechanism, and the state dict exposed by ZeroRedundancyOptimizer"""
|
|
self.dist_init(self.rank)
|
|
RECIPIENT_RANK = 0
|
|
|
|
# Run a dummy step so that the optimizer state dict exists
|
|
batch, input_width, hidden, target_width = 3, 20, 10, 5
|
|
target = torch.rand((batch, target_width), device=self.device)
|
|
inputs = torch.rand((batch, input_width), device=self.device)
|
|
|
|
model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
|
|
model.to(self.device)
|
|
|
|
loss_fn = torch.nn.L1Loss()
|
|
loss_fn.to(self.device)
|
|
|
|
# With SGD, Momentum is required to get a state to shard
|
|
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99)
|
|
|
|
def closure():
|
|
optimizer.zero_grad()
|
|
output = model(inputs)
|
|
loss = loss_fn(output, target)
|
|
loss.backward()
|
|
return loss
|
|
|
|
_ = optimizer.step(closure=closure)
|
|
|
|
# Update the optimizer state on the reference rank
|
|
optimizer.consolidate_state_dict(to=RECIPIENT_RANK)
|
|
|
|
# Fetch the state on the reference rank
|
|
# - check that it has the correct size
|
|
# - load it again
|
|
if self.rank == RECIPIENT_RANK:
|
|
optimizer_state_dict = optimizer.state_dict()
|
|
self.assertEqual(len(optimizer_state_dict["state"]), len(list(model.parameters())))
|
|
else:
|
|
optimizer_state_dict = {}
|
|
|
|
optimizer_state_dict = _broadcast_object(
|
|
optimizer_state_dict,
|
|
src_rank=RECIPIENT_RANK,
|
|
group=dist.group.WORLD,
|
|
device=self.device,
|
|
)
|
|
|
|
# Load the optimizer state dict, check that no exception is raised
|
|
optimizer.load_state_dict(optimizer_state_dict)
|
|
|
|
def test_multiple_groups(self):
|
|
""" Check that the ZeroRedundancyOptimizer handles working with multiple process groups"""
|
|
self.dist_init(self.rank, self.world_size, dist.Backend.GLOO)
|
|
|
|
# Only work with the even ranks, to check that the global_rank indexing is properly used
|
|
sub_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
|
|
process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")
|
|
|
|
# Make sure that all the ranks get different training data
|
|
# So that the sync check in between their models is meaningful
|
|
torch.manual_seed(self.rank)
|
|
np.random.seed(self.rank)
|
|
|
|
# Standard deep learning setup
|
|
epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
|
|
loss_fn = torch.nn.L1Loss().to(self.device)
|
|
|
|
def check(optimizer):
|
|
# Just run a couple of epochs, check that the model is properly updated
|
|
for _ in range(epochs):
|
|
target = torch.rand((batch, target_width), device=self.device)
|
|
inputs = torch.rand((batch, input_width), device=self.device)
|
|
|
|
def closure():
|
|
optimizer.zero_grad()
|
|
output = model(inputs)
|
|
loss = loss_fn(output, target)
|
|
loss /= self.world_size
|
|
loss.backward()
|
|
dist.all_reduce(loss, group=process_group) # Not strictly needed for the test below
|
|
|
|
return loss
|
|
|
|
_ = optimizer.step(closure=closure)
|
|
|
|
# Check that all the params are the same on all ranks
|
|
for pg in optimizer.param_groups:
|
|
for p in pg["params"]:
|
|
receptacle = [p.clone() for _ in sub_group_ranks] if self.rank == 0 else []
|
|
dist.gather(p, receptacle, dst=0, group=process_group)
|
|
if self.rank == 0:
|
|
for sync_p in receptacle[1:]:
|
|
assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"
|
|
|
|
if self.rank in sub_group_ranks:
|
|
# Model fitting in the broadcast bucket
|
|
model = torch.nn.Sequential(
|
|
torch.nn.Linear(input_width, hidden),
|
|
torch.nn.Linear(hidden, target_width),
|
|
).to(self.device)
|
|
|
|
# With SGD, Momentum is required to get a state to shard
|
|
optimizer = ZeroRedundancyOptimizer(
|
|
model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99, process_group=process_group
|
|
)
|
|
check(optimizer)
|
|
|
|
# Model not-fitting in the broadcast bucket
|
|
model = torch.nn.Sequential(
|
|
torch.nn.Linear(input_width, hidden),
|
|
torch.nn.Linear(hidden, target_width),
|
|
).to(self.device)
|
|
|
|
# With SGD, Momentum is required to get a state to shard
|
|
optimizer = ZeroRedundancyOptimizer(
|
|
model.parameters(),
|
|
optimizer_class=SGD,
|
|
lr=0.1,
|
|
momentum=0.99,
|
|
process_group=process_group,
|
|
)
|
|
check(optimizer)
|
|
|
|
@common_distributed.skip_if_no_gpu
|
|
def test_local_optimizer_parity(self):
|
|
"""When combined with DDP, check that ZeroRedundancyOptimizer(optimizer) and the same monolithic optimizer
|
|
give the exact same results
|
|
"""
|
|
|
|
self.dist_init(self.rank)
|
|
BATCHS = 20
|
|
|
|
with torch.cuda.device(self.rank):
|
|
torch.manual_seed(self.rank)
|
|
np.random.seed(self.rank)
|
|
|
|
def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer]):
|
|
# Any model works. Add one different buffer per rank
|
|
model = torch.nn.Sequential(
|
|
torch.nn.Linear(2, 3),
|
|
torch.nn.Linear(3, 3),
|
|
torch.nn.Linear(3, 3),
|
|
)
|
|
model.register_buffer("test_buffer", torch.ones((1)) * self.rank)
|
|
model.to(self.device)
|
|
|
|
sharded_optimizer = ZeroRedundancyOptimizer(
|
|
params=model.parameters(), optimizer_class=optimizer, lr=1e-3
|
|
)
|
|
sharded_ddp_model = DDP(
|
|
module=model, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True
|
|
)
|
|
|
|
ddp_model_single = copy.deepcopy(model)
|
|
ddp_model_single.to(self.device)
|
|
|
|
ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3)
|
|
ddp_model = DDP(
|
|
ddp_model_single, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True
|
|
)
|
|
|
|
# The model should be synchronized in between the ranks at construction time, check that
|
|
check_same_model_params(sharded_ddp_model, ddp_model, "Models differ from the start")
|
|
|
|
def check_step():
|
|
input_tensor = torch.rand((64, 2))
|
|
|
|
def closure_ddp(input_tensor=input_tensor):
|
|
ddp_optimizer.zero_grad()
|
|
ddp_loss = ddp_model(input_tensor).abs().sum()
|
|
ddp_loss.backward()
|
|
return ddp_loss
|
|
|
|
def closure_sharded(input_tensor=input_tensor):
|
|
sharded_optimizer.zero_grad()
|
|
sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
|
|
sharded_loss.backward()
|
|
return sharded_loss
|
|
|
|
loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
|
|
loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))
|
|
|
|
assert torch.allclose(
|
|
loss_ddp, loss_sharded_optim
|
|
), "Losses differ in between Pytorch optim and ZeroRedundancyOptimizer"
|
|
|
|
check_same_model_params(sharded_ddp_model, ddp_model, "Models differ after a step")
|
|
|
|
# The models should stay the same in between the ranks
|
|
for i in range(BATCHS):
|
|
check_step()
|
|
|
|
# Change the models trainability, check that parity is maintained
|
|
# only check after a couple of constant batchs to go through both regimes
|
|
if i > BATCHS // 2:
|
|
next(ddp_model.parameters()).requires_grad = bool(i % 2)
|
|
next(sharded_ddp_model.parameters()).requires_grad = bool(i % 2)
|
|
|
|
# Check that the checkpoints are compatible
|
|
reference_rank = 0
|
|
# - get states
|
|
ddp_state_dict = ddp_optimizer.state_dict()
|
|
sharded_optimizer.consolidate_state_dict(to=reference_rank)
|
|
sharded_optim_state_dict = [sharded_optimizer.state_dict() if self.rank == reference_rank else {}]
|
|
dist.broadcast_object_list(sharded_optim_state_dict, src=reference_rank, group=dist.group.WORLD)
|
|
sharded_optim_state_dict = sharded_optim_state_dict[0]
|
|
|
|
# - cross load the states
|
|
# run one step and check that the models are still the same
|
|
ddp_state_dict_ref = copy.deepcopy(ddp_state_dict) # OSS will remove some states
|
|
ddp_optimizer.load_state_dict(sharded_optim_state_dict) # mixup on purpose !
|
|
sharded_optimizer.load_state_dict(ddp_state_dict)
|
|
check_step()
|
|
|
|
# - self load, rewind, check no problem
|
|
# run one step and check that the models are still the same
|
|
ddp_optimizer.load_state_dict(ddp_state_dict_ref)
|
|
sharded_optimizer.load_state_dict(sharded_optim_state_dict)
|
|
check_step()
|
|
|
|
for opt in [torch.optim.SGD, torch.optim.Adam]:
|
|
check_optimizer_equivalence(opt)
|
|
|
|
def _test_zero_join(self, device):
|
|
r"""
|
|
Check that the ZeRO join hook allows training with uneven inputs when using the given device.
|
|
|
|
Arguments:
|
|
device (torch.device): device used to store parameters and perform
|
|
collective communications.
|
|
"""
|
|
NUM_INPUTS = 3
|
|
NUM_EPOCHS = 2
|
|
torch.manual_seed(0)
|
|
torch.cuda.manual_seed(0)
|
|
|
|
rank = self.rank
|
|
world_size = self.world_size
|
|
is_gpu = device.type == "cuda"
|
|
backend = _get_backend_for_tests() if is_gpu else dist.Backend.GLOO
|
|
self.dist_init(rank, world_size, backend)
|
|
if is_gpu:
|
|
torch.cuda.set_device(self.device)
|
|
|
|
model = torch.nn.Sequential(
|
|
torch.nn.Linear(2, 3),
|
|
torch.nn.Linear(3, 3),
|
|
torch.nn.Linear(3, 3),
|
|
)
|
|
model.to(device)
|
|
|
|
# DDP ensures correct gradients in data parallel training, so DDP with
|
|
# local optimizers on uneven inputs should be equivalent to ZeRO on
|
|
# uneven inputs with gradients being manually set
|
|
ddp_model = DDP(model, device_ids=[rank]) if is_gpu else DDP(model)
|
|
local_optim = torch.optim.Adam(ddp_model.parameters(), lr=0.01)
|
|
zero_model = copy.deepcopy(model)
|
|
zero_model.to(device)
|
|
zero_optim = ZeroRedundancyOptimizer(zero_model.parameters(), torch.optim.Adam, lr=0.01)
|
|
loss_fn = torch.nn.MSELoss()
|
|
|
|
# Use uneven inputs: rank i has i extra inputs
|
|
inputs = [torch.randn(20, 2).to(device) for _ in range(NUM_INPUTS + rank)]
|
|
labels = torch.randn(20, 3).to(device)
|
|
|
|
# Save the gradients and parameters from DDP as the ground truth; do
|
|
# so on the last-joining rank (in this case, the largest rank)
|
|
grads_at_each_iter = []
|
|
params_at_each_iter = []
|
|
with ddp_model.join():
|
|
for _ in range(NUM_EPOCHS):
|
|
for input in inputs:
|
|
output = ddp_model(input)
|
|
loss_fn(output, labels).backward()
|
|
if rank == world_size - 1:
|
|
grads = []
|
|
for p in ddp_model.parameters():
|
|
grads.append(p.grad.detach().clone().to(device))
|
|
local_optim.step()
|
|
if rank == world_size - 1:
|
|
params = []
|
|
for p in ddp_model.parameters():
|
|
params.append(p.detach().clone().to(device))
|
|
grads_at_each_iter.append(grads)
|
|
params_at_each_iter.append(params)
|
|
|
|
# Broadcast the saved gradients and parameters to all of the other
|
|
# ranks (which joined early)
|
|
grads_and_params = [grads_at_each_iter, params_at_each_iter]
|
|
grads_and_params = _broadcast_object(grads_and_params, src_rank=world_size - 1, group=dist.group.WORLD, device=device)
|
|
grads_at_each_iter = grads_and_params[0]
|
|
params_at_each_iter = grads_and_params[1]
|
|
# TODO: Replace this `_broadcast_object` with `broadcast_object_list`
|
|
# once the latter supports loading to the destination device instead
|
|
# of the source device
|
|
|
|
# A process must still set the remaining gradients after joining, so we
|
|
# define a join hook to do this before the ZeRO join hook
|
|
class _JoinGradInfo():
|
|
def __init__(self, grads):
|
|
self.grads = grads # remaining gradients to set (in order)
|
|
self.index = 0
|
|
|
|
class _SetGradsJoinHook(JoinHook):
|
|
def __init__(self, zero_optim, grads):
|
|
zero_optim._join_grad_info = _JoinGradInfo(grads)
|
|
self.zero = zero_optim
|
|
super().__init__()
|
|
|
|
def main_hook(self):
|
|
grads = self.zero._join_grad_info.grads[self.zero._join_grad_info.index]
|
|
self.zero._join_grad_info.index += 1
|
|
for p, grad in zip(self.zero._all_params, grads):
|
|
p.grad = grad.detach().clone().to(device)
|
|
|
|
class _GradientSetter(Joinable):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def join_hook(self, **kwargs):
|
|
assert "zero_optim" in kwargs
|
|
assert "grads" in kwargs
|
|
zero_optim = kwargs["zero_optim"]
|
|
grads = kwargs["grads"]
|
|
return _SetGradsJoinHook(zero_optim, grads)
|
|
|
|
@property
|
|
def join_device(self):
|
|
return device
|
|
|
|
@property
|
|
def join_process_group(self):
|
|
return dist.group.WORLD
|
|
|
|
num_grads_after_joining = NUM_EPOCHS * (world_size - rank - 1)
|
|
grads = grads_at_each_iter[-num_grads_after_joining:]
|
|
gradient_setter = _GradientSetter()
|
|
iter = 0
|
|
with Join([gradient_setter, zero_optim], zero_optim=zero_optim, grads=grads):
|
|
for _ in range(NUM_EPOCHS):
|
|
for input in inputs:
|
|
# Notify join context that this process has not joined
|
|
Join.notify_join_context(gradient_setter)
|
|
|
|
# Set gradients manually
|
|
for p, grad in zip(zero_model.parameters(), grads_at_each_iter[iter]):
|
|
p.grad = grad.detach().clone().to(device)
|
|
|
|
# Perform optimizer step and check parity
|
|
zero_optim.step()
|
|
for p, ddp_p in zip(zero_model.parameters(), params_at_each_iter[iter]):
|
|
assert torch.allclose(p, ddp_p), \
|
|
"Parameters differ between using ZeRO and local optimizer"
|
|
iter += 1
|
|
|
|
@common_distributed.requires_nccl()
|
|
@common_distributed.skip_if_lt_x_gpu(2)
|
|
def test_zero_join_gpu(self):
|
|
"""Check that the ZeRO join hook allows training with uneven inputs on GPU."""
|
|
self._test_zero_join(self.device)
|
|
|
|
@common_distributed.requires_gloo()
|
|
def test_zero_join_cpu(self):
|
|
"""Check that the ZeRO join hook allows training with uneven inputs on CPU."""
|
|
self._test_zero_join(torch.device("cpu"))
|
|
|
|
def _test_zero_model_parallel(self, parameters_as_bucket_view: bool):
|
|
# Use two processes each with two GPUs
|
|
assert self.rank < 2
|
|
NUM_EPOCHS = 3
|
|
NUM_INPUTS = 5
|
|
LR = 0.01
|
|
torch.manual_seed(0)
|
|
torch.cuda.manual_seed(0)
|
|
|
|
class ModelParallelModel(torch.nn.Module):
|
|
def __init__(self, dev0, dev1):
|
|
super().__init__()
|
|
self.dev0 = dev0
|
|
self.dev1 = dev1
|
|
self.net0 = torch.nn.Linear(10, 10).to(dev0)
|
|
self.relu = torch.nn.ReLU()
|
|
self.net1 = torch.nn.Linear(10, 5).to(dev1)
|
|
|
|
def forward(self, x):
|
|
x = x.to(self.dev0)
|
|
x = self.relu(self.net0(x))
|
|
x = x.to(self.dev1)
|
|
return self.net1(x)
|
|
|
|
class LocalModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.net0 = torch.nn.Linear(10, 10)
|
|
self.relu = torch.nn.ReLU()
|
|
self.net1 = torch.nn.Linear(10, 5)
|
|
|
|
def forward(self, x):
|
|
return self.net1(self.relu(self.net0(x)))
|
|
|
|
dev0 = 2 * self.rank
|
|
dev1 = 2 * self.rank + 1
|
|
mp_model = ModelParallelModel(dev0, dev1)
|
|
ddp_model = DDP(mp_model)
|
|
local_model = LocalModel()
|
|
cpu_device = torch.device("cpu")
|
|
# Ensure the parameters are the same across the two models
|
|
local_model.net0.weight = torch.nn.Parameter(mp_model.net0.weight.detach().clone().to(cpu_device))
|
|
local_model.net0.bias = torch.nn.Parameter(mp_model.net0.bias.detach().clone().to(cpu_device))
|
|
local_model.net1.weight = torch.nn.Parameter(mp_model.net1.weight.detach().clone().to(cpu_device))
|
|
local_model.net1.bias = torch.nn.Parameter(mp_model.net1.bias.detach().clone().to(cpu_device))
|
|
|
|
# Compare parity between DDP with model parallelism using ZeRO and
|
|
# a local model using a local optimizer
|
|
zero_optim = ZeroRedundancyOptimizer(
|
|
ddp_model.parameters(),
|
|
optimizer_class=torch.optim.Adam,
|
|
parameters_as_bucket_view=parameters_as_bucket_view,
|
|
lr=LR
|
|
)
|
|
local_optim = torch.optim.Adam(local_model.parameters(), lr=LR)
|
|
inputs = [torch.randn(20, 10) for _ in range(NUM_INPUTS)]
|
|
|
|
for _ in range(NUM_EPOCHS):
|
|
for input in inputs:
|
|
def closure_local():
|
|
local_optim.zero_grad()
|
|
local_loss = local_model(input).abs().sum()
|
|
local_loss.backward()
|
|
return local_loss
|
|
|
|
def closure_ddp():
|
|
zero_optim.zero_grad()
|
|
ddp_loss = ddp_model(input).abs().sum()
|
|
ddp_loss.backward()
|
|
return ddp_loss
|
|
|
|
local_loss = cast(torch.Tensor, local_optim.step(closure=closure_local))
|
|
ddp_loss = cast(torch.Tensor, zero_optim.step(closure=closure_ddp)).to(cpu_device)
|
|
|
|
assert torch.allclose(
|
|
local_loss, ddp_loss
|
|
), "Losses differ between local optim and ZeroRedundancyOptimizer"
|
|
|
|
for local_p, ddp_p in zip(local_model.parameters(), ddp_model.parameters()):
|
|
ddp_p = ddp_p.to(cpu_device)
|
|
assert torch.allclose(local_p, ddp_p), "Models differ after a step"
|
|
|
|
@common_distributed.skip_if_lt_x_gpu(4)
|
|
def test_zero_model_parallel_with_bucket_view(self):
|
|
"""
|
|
Check that ZeRO works with model parallelism where layers are sharded
|
|
across devices when ``parameters_as_bucket_view=True``.
|
|
"""
|
|
if self.rank >= 2:
|
|
return
|
|
self.dist_init(self.rank, world_size=2)
|
|
self._test_zero_model_parallel(parameters_as_bucket_view=True)
|
|
|
|
@common_distributed.skip_if_lt_x_gpu(4)
|
|
def test_zero_model_parallel_without_bucket_view(self):
|
|
"""
|
|
Check that ZeRO works with model parallelism where layers are sharded
|
|
across devices when ``parameters_as_bucket_view=False``.
|
|
"""
|
|
if self.rank >= 2:
|
|
return
|
|
self.dist_init(self.rank, world_size=2)
|
|
self._test_zero_model_parallel(parameters_as_bucket_view=False)
|
|
|
|
def _test_ddp_zero_overlap(
|
|
self,
|
|
device,
|
|
hook_constructor,
|
|
gradient_as_bucket_view,
|
|
static_graph,
|
|
**kwargs,
|
|
):
|
|
SGD_LR = 0.01
|
|
SGD_MOMENTUM = 0.9
|
|
SGD_WEIGHT_DECAY = 0.001
|
|
NUM_INPUTS = 5
|
|
torch.manual_seed(0)
|
|
torch.cuda.manual_seed(0)
|
|
|
|
rank = self.rank
|
|
is_gpu = device.type == "cuda"
|
|
if is_gpu:
|
|
torch.cuda.set_device(device)
|
|
models_to_test = [
|
|
(
|
|
torch.nn.Sequential(
|
|
torch.nn.Linear(1000, 2000),
|
|
torch.nn.Linear(2000, 500)
|
|
),
|
|
[torch.randn(1, 1000).to(device) for _ in range(NUM_INPUTS)]
|
|
),
|
|
]
|
|
if HAS_TORCHVISION:
|
|
models_to_test.append(
|
|
(
|
|
torchvision.models.resnet50(),
|
|
[torch.randn(1, 3, 3, 1000).to(device) for _ in range(NUM_INPUTS)]
|
|
)
|
|
)
|
|
for (model, inputs) in models_to_test:
|
|
# Enable determinism in cudnn operators
|
|
with torch.backends.cudnn.flags(
|
|
enabled=True, deterministic=True, benchmark=False
|
|
):
|
|
device_ids = [rank] if is_gpu else None
|
|
# Set up the DDP model overlapping with ZeRO
|
|
ddp_model_overlap = DDP(
|
|
copy.deepcopy(model).to(device),
|
|
device_ids=device_ids,
|
|
gradient_as_bucket_view=gradient_as_bucket_view
|
|
)
|
|
if static_graph:
|
|
ddp_model_overlap._set_static_graph()
|
|
zero_optim = ZeroRedundancyOptimizer(
|
|
ddp_model_overlap.parameters(),
|
|
optimizer_class=torch.optim.SGD,
|
|
overlap_with_ddp=True,
|
|
lr=SGD_LR,
|
|
momentum=SGD_MOMENTUM,
|
|
weight_decay=SGD_WEIGHT_DECAY,
|
|
)
|
|
ddp_model_overlap.register_comm_hook(
|
|
None,
|
|
hook_constructor(allreduce_hook, ddp_model_overlap, zero_optim, **kwargs)
|
|
)
|
|
|
|
# Set up the DDP model with local optimizer
|
|
ddp_model_local = DDP(
|
|
copy.deepcopy(model).to(device),
|
|
device_ids=device_ids,
|
|
gradient_as_bucket_view=gradient_as_bucket_view
|
|
)
|
|
if static_graph:
|
|
ddp_model_local._set_static_graph()
|
|
local_optim = torch.optim.SGD(
|
|
ddp_model_local.parameters(),
|
|
lr=SGD_LR,
|
|
momentum=SGD_MOMENTUM,
|
|
weight_decay=SGD_WEIGHT_DECAY
|
|
)
|
|
|
|
# Check that the parameters match initially
|
|
for p1, p2 in zip(
|
|
ddp_model_overlap.parameters(),
|
|
ddp_model_local.parameters()
|
|
):
|
|
self.assertEqual(p1, p2)
|
|
|
|
# Save the parameters to ensure they were updated
|
|
init_params_overlap = copy.deepcopy(
|
|
list(ddp_model_overlap.parameters())
|
|
)
|
|
|
|
# Ensure that this test runs independently
|
|
dist.barrier()
|
|
|
|
# Run the DDP model overlapping with ZeRO
|
|
# NOTE: Overlapping currently requires 2 or 3 warmup iterations
|
|
# to ensure DDP buckets have been rebuilt (depending on the
|
|
# value of `static_graph`)
|
|
num_warmup_inputs = 2 if not static_graph else 3
|
|
for input in inputs[:num_warmup_inputs]:
|
|
output = ddp_model_overlap(input)
|
|
loss = output.sum()
|
|
loss.backward()
|
|
for input in inputs:
|
|
zero_optim.zero_grad()
|
|
output = ddp_model_overlap(input)
|
|
loss = output.sum()
|
|
loss.backward()
|
|
|
|
# Run the DDP model with local optimizer
|
|
for input in inputs:
|
|
local_optim.zero_grad()
|
|
output = ddp_model_local(input)
|
|
loss = output.sum()
|
|
loss.backward()
|
|
local_optim.step()
|
|
dist.barrier()
|
|
|
|
# Check that the parameters are equal
|
|
for p1, p2 in zip(
|
|
ddp_model_overlap.parameters(),
|
|
ddp_model_local.parameters()
|
|
):
|
|
self.assertEqual(p1, p2)
|
|
|
|
# Check that the parameters were updated
|
|
self.assertNotEqual(init_params_overlap, list(ddp_model_overlap.parameters()))
|
|
|
|
# Ensure that this test runs independently
|
|
dist.barrier()
|
|
|
|
@common_distributed.skip_if_win32()
|
|
@common_distributed.requires_nccl()
|
|
@common_distributed.skip_if_no_gpu
|
|
@common_distributed.skip_if_rocm
|
|
def test_ddp_with_zero_step_parity_gpu(self):
|
|
r"""
|
|
Check that overlapping DDP with ZeRO using ``hook_with_zero_step()``
|
|
achieves parity with DDP using a local optimizer when running on GPU.
|
|
|
|
NOTE: The test is skipped if using Windows since functional optimizers
|
|
are not currently supported.
|
|
"""
|
|
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
|
|
for gradient_as_bucket_view, static_graph in itertools.product(
|
|
[True, False],
|
|
[True, False]
|
|
):
|
|
self._test_ddp_zero_overlap(
|
|
torch.device(self.rank),
|
|
hook_with_zero_step,
|
|
gradient_as_bucket_view,
|
|
static_graph
|
|
)
|
|
# TODO: Add `test_ddp_with_zero_step_parity_cpu()` once the Gloo
|
|
# synchronization issue causing hangs is fixed.
|
|
|
|
@common_distributed.skip_if_win32()
|
|
@common_distributed.requires_nccl()
|
|
@common_distributed.skip_if_no_gpu
|
|
@common_distributed.skip_if_rocm
|
|
def test_ddp_with_zero_step_interleaved_parity_gpu(self):
|
|
r"""
|
|
Check that overlapping DDP with ZeRO using
|
|
``hook_with_zero_step_interleaved()`` achieves parity with DDP using a
|
|
local optimizer when running on GPU.
|
|
|
|
NOTE: The test is skipped if using Windows since functional optimizers
|
|
are not currently supported.
|
|
"""
|
|
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
|
|
for gradient_as_bucket_view, static_graph in itertools.product(
|
|
[True, False],
|
|
[True, False]
|
|
):
|
|
self._test_ddp_zero_overlap(
|
|
torch.device(self.rank),
|
|
hook_with_zero_step_interleaved,
|
|
gradient_as_bucket_view,
|
|
static_graph
|
|
)
|
|
# TODO: Add `test_ddp_with_zero_step_interleaved_parity_cpu()` once the
|
|
# Gloo synchronization issue causing hangs is fixed.
|
|
|
|
@common_distributed.skip_if_win32()
|
|
@common_distributed.requires_nccl()
|
|
@common_distributed.skip_if_no_gpu
|
|
@common_distributed.skip_if_rocm
|
|
def test_ddp_with_zero_step_uniform_parity_gpu(self):
|
|
r"""
|
|
Check that overlapping DDP with ZeRO using
|
|
``hook_with_zero_step()`` with ``shard_buckets=True``
|
|
achieves parity with DDP using a local optimizer when running on GPU.
|
|
|
|
NOTE: The test is skipped if using Windows since functional optimizers
|
|
are not currently supported.
|
|
"""
|
|
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
|
|
for gradient_as_bucket_view, static_graph in itertools.product(
|
|
[True, False],
|
|
[True, False]
|
|
):
|
|
self._test_ddp_zero_overlap(
|
|
torch.device(self.rank),
|
|
hook_with_zero_step,
|
|
gradient_as_bucket_view,
|
|
static_graph,
|
|
shard_buckets=True,
|
|
)
|
|
# TODO: Add `test_ddp_with_zero_step_uniform_parity_cpu()` once the Gloo
|
|
# synchronization issue causing hangs is fixed.
|
|
|
|
@common_distributed.skip_if_win32()
|
|
@common_distributed.requires_nccl()
|
|
@common_distributed.skip_if_no_gpu
|
|
@common_distributed.skip_if_rocm
|
|
def test_ddp_with_zero_step_interleaved_uniform_parity_gpu(self):
|
|
r"""
|
|
Check that overlapping DDP with ZeRO using
|
|
``hook_with_zero_step()`` with ``shard_buckets=True``
|
|
achieves parity with DDP using a local optimizer when running on GPU.
|
|
|
|
NOTE: The test is skipped if using Windows since functional optimizers
|
|
are not currently supported.
|
|
"""
|
|
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
|
|
for gradient_as_bucket_view, static_graph in itertools.product(
|
|
[True, False],
|
|
[True, False]
|
|
):
|
|
self._test_ddp_zero_overlap(
|
|
torch.device(self.rank),
|
|
hook_with_zero_step_interleaved,
|
|
gradient_as_bucket_view,
|
|
static_graph,
|
|
shard_buckets=True,
|
|
)
|
|
# TODO: Add `test_ddp_with_zero_step_interleaved_uniform_parity_cpu()` once
|
|
# the Gloo synchronization issue causing hangs is fixed.
|
|
|
|
if __name__ == "__main__":
|
|
# ! unittest should not be used here, else the tests are not properly registered
|
|
common_utils.run_tests()
|